BackgroundWe aimed to establish a bipolar disorder biobank to serve as a resource for clinical and biomarker studies of disease risk and treatment response. Here, we describe the aims, design, infrastructure, and research uses of the biobank, along with demographics and clinical features of the first participants enrolled.MethodsPatients were recruited for the Mayo Clinic Bipolar Biobank beginning in July 2009. The Structured Clinical Interview for DSM-IV was used to confirm bipolar diagnosis. The Bipolar Biobank Clinical Questionnaire and Participant Questionnaire were designed to collect detailed demographic and clinical data, including clinical course of illness measures that would delineate differential phenotypes for subsequent analyses. Blood specimens were obtained from participants, and various aliquots were stored for future research.ResultsAs of September 2014, 1363 participants have been enrolled in the bipolar biobank. Among these first participants, 69.0 % had a diagnosis of bipolar disorder type I. The group was 60.2 % women and predominantly white (90.6 %), with a mean (SD) age of 42.6 (14.9) years. Clinical phenotypes of the group included history of psychosis (42.3 %), suicide attempt (32.5 %), addiction to alcohol (39.1 %), addiction to nicotine (39.8 %), obesity (42.9 %), antidepressant-induced mania (31.7 %), tardive dyskinesia (3.2 %), and history of drug-related serious rash (5.7 %).ConclusionsQuantifying phenotypic patterns of illness beyond bipolar subtype can provide more detailed clinical disease characteristics for biomarker research, including genomic-risk studies. Future research can harness clinically useful biomarkers using state-of-the-art research technology to help stage disease burden and better individualize treatment selection for patients with bipolar disorder.
Narrowly defined, AIM appears to be at greatest risk for bipolar I patients. Our haplotype analysis of SLC6A4 suggests that future pharmacogenetic studies should not only focus on the SLC6A4 promotor variation but also investigate the role of other variants in the gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.