DESIRS is a new undulator-based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas-phase studies of molecular and electronic structures, reactivity and polarization-dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier-transform spectrometer (FTS) for ultra-high-resolution absorption spectroscopy (resolving power up to 10(6)) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5-40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m-long pure electromagnetic variable-polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi-perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic-free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre-focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off-plane normal-incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm(-1), allowing the flux-to-resolution trade-off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 10(10)-10(11) photons s(-1) range in a 1/50000 bandwidth, and 10(12)-10(13) photons s(-1) in a 1/1000 bandwidth, which is very satisfactory although slightly below optical simulations. All of these features make DESIRS a state-of-the-art VUV beamline for spectroscopy and dichroism open to a broad scientific community.
The DEIMOS (Dichroism Experimental Installation for Magneto-Optical Spectroscopy) beamline was part of the second phase of the beamline development at French Synchrotron SOLEIL (Source Optimisée de Lumière à Energie Intermédiaire du LURE) and opened to users in March 2011. It delivers polarized soft x-rays to perform x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and x-ray linear dichroism in the energy range 350-2500 eV. The beamline has been optimized for stability and reproducibility in terms of photon flux and photon energy. The main end-station consists in a cryo-magnet with 2 split coils providing a 7 T magnetic field along the beam or 2 T perpendicular to the beam with a controllable temperature on the sample from 370 K down to 1.5 K.
DISCO, a novel low-energy beamline covering the spectrum range from the VUV to the visible, has received its first photons at the French synchrotron SOLEIL. In this article the DISCO design and concept of three experimental stations serving research communities in biology and chemistry are described. Emphasis has been put on high flux generation and preservation of polarization at variable energy resolutions. The three experiments include a completely new approach for microscopy and atmospheric pressure experiments as well as a ;classical' synchrotron radiation circular dichroism station. Preliminary tests of the optical design and technical concept have been made. Theoretical predictions of the beam have been compared with the first images produced by the first photons originating from the large-aperture bending-magnet source. Results are also reported concerning the cold finger used to absorb hard X-ray radiation in the central part of the synchrotron beam and to avoid heavy thermal load on the following optics. Wavelength selection using monochromators with different gratings for each experimental set-up as well as beam propagation and conditioning throughout the optical system are detailed. First photons comply very well with the theoretical calculations.
Use of deep ultraviolet (DUV, below 350 nm) fluorescence opens up new possibilities in biology because it does not need external specific probes or labeling but instead allows use of the intrinsic fluorescence that exists for many biomolecules when excited in this wavelength range. Indeed, observation of label free biomolecules or active drugs ensures that the label will not modify the biolocalization or any of its properties. In the past, it has not been easy to accomplish DUV fluorescence imaging due to limited sources and to microscope optics. Two worlds were coexisting: the spectrofluorometric measurements with full spectrum information with DUV excitation, which lacked high-resolution localization, and the microscopic world with very good spatial resolution but poor spectral resolution for which the wavelength range was limited to 350 nm. To combine the advantages of both worlds, we have developed a DUV fluorescence microscope for cell biology coupled to a synchrotron beamline, providing fine tunable excitation from 180 to 600 nm and full spectrum acquired on each point of the image, to study DUV excited fluorescence emitted from nanovolumes directly inside live cells or tissue biopsies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.