Normal human IgG for intravenous use (IVIg), administered intraperitoneally, protected Lewis rats against experimental allergic encephalomyelitis (EAE) induced by immunization with myelin basic protein (MBP). We demonstrate that protection was associated with an acquired unresponsiveness of lymphocytes to MBP and a decreased ability of the cells to produce IL-2, IFN-gamma and TNF-alpha and, to a lesser degree, IL-4 and IL-10, in the presence of the antigen. Lymph node (LN) cells of protected rats failed to passively transfer EAE to naive syngeneic animals. Our observations indicate that, rather than inducing selective immune deviation, IVIg induces preferential MBP unresponsiveness of Th1 cells. Whereas LN and splenic cells of IVIg-treated rats did not proliferate nor secrete IL-2 in the presence of the antigen, proliferation was restored by adding exogeneous recombinant IL-2. In contrast, LN cells of IVIg-treated rats proliferated normally and produced IL-2 in the presence of concanavalin A, indicating the selectivity for MBP of the anergy induced by IVIg when given at the time of immunization with the antigen. Treatment with IVIg also allowed a resistance to the secondary induction of EAE, indicating that IVIg protects from EAE but does not interfere with the processes that eventually lead to resistance to re-challenge. These data document the immunomodulatory effects of IVIg in T cell-dependent experimental autoimmune disease and further suggest a role for normal Ig in the selection of functional T cell repertoires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.