Passive air samplers were used to investigate urban-rural differences of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) over an integrated time period. Samplers consisting of polyurethane foam (PUF) disks and semi-permeable membrane devices (SPMDs) were housed in protective chambers and deployed at six sites for a 4 month duration in the summer of 2000. The sampling transect originated in downtown Toronto and extended approximately 75 km northward into a rural region. Results for the two types of samplers agreed well with one another. Higher blank levels were encountered for the SPMDs, especially for the OCPs, whereas blanks were very low for the PUF disks. Passive sampler-derived air concentrations were consistent with previous measurements of PCBs and OCPs in the region. The largest urban-rural gradient was observed for PCBs (approximately 5-10 times). Chlordanes also showed an urban-rural gradient, possibly reflecting past usage of chlordane on residential lawns and emissions from treated house foundations. Other OCPs exhibited a rural-urban gradient (dieldrin, endosulfan 1, and DDT isomers), which was attributed either to off-gassing from previously treated agricultural soils (dieldrin and DDTs) or to continued usage in agriculture (endosulfan 1). The results of this study demonstrated the feasibility of using such devices to determine air concentrations of persistent organic pollutants (POPs) and to assess their spatial distribution for time-integrated samples. Data such as this is essential for: model validation and for process research and addressing international monitoring strategies on POPs.
We report here on the spatial distribution of C(4), C(6), and C(8) perfluoroalkyl sulfonates, C(6)-C(14) perfluoroalkyl carboxylates, and perfluorooctanesulfonamide in the Atlantic and Arctic Oceans, including previously unstudied coastal waters of North and South America, and the Canadian Arctic Archipelago. Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) were typically the dominant perfluoroalkyl acids (PFAAs) in Atlantic water. In the midnorthwest Atlantic/Gulf Stream, sum PFAA concentrations (∑PFAAs) were low (77-190 pg/L) but increased rapidly upon crossing into U.S. coastal water (up to 5800 pg/L near Rhode Island). ∑PFAAs in the northeast Atlantic were highest north of the Canary Islands (280-980 pg/L) and decreased with latitude. In the South Atlantic, concentrations increased near Rio de la Plata (Argentina/Uruguay; 350-540 pg/L ∑PFAAs), possibly attributable to insecticides containing N-ethyl perfluorooctanesulfonamide, or proximity to Montevideo and Buenos Aires. In all other southern hemisphere locations, ∑PFAAs were <210 pg/L. PFOA/PFOS ratios were typically ≥1 in the northern hemisphere, ∼1 near the equator, and ≤1 in the southern hemisphere. In the Canadian Arctic, ∑PFAAs ranged from 40 to 250 pg/L, with perfluoroheptanoate, PFOA, and PFOS among the PFAAs detected at the highest concentrations. PFOA/PFOS ratios (typically ≫1) decreased from Baffin Bay to the Amundsen Gulf, possibly attributable to increased atmospheric inputs. These data help validate global emissions models and contribute to understanding of long-range transport pathways and sources of PFAAs to remote regions.
This is the second of two papers demonstrating the feasibility of using passive air samplers to investigate persistent organic pollutants along an urban-rural transect in Toronto. The first paper investigated spatial trends for polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). This second paper investigates the seasonality of air concentrations for polycyclic aromatic hydrocarbons (PAHs), PCBs, and OCPs along this transect. Air samplers, consisting of polyurethane foam (PUF) disks housed in stainless steel domed chambers, were deployed for three 4-month integration periods from June 2000 to July 2001. The seasonal variations of derived air concentrations for PAHs, PCBs, and OCPs reflected the different source characteristics for these compounds. PAHs showed a strong urban-rural gradient with maximum concentrations at urban sites during the summer period (July-October). These high summer values in Toronto were attributed to increases in evaporative emissions from petroleum products such as asphalt. PCBs also exhibited a strong urban-rural gradient with maximum air concentrations (approximately 2-3 times higher) during the spring period (April-June). This was attributed to increased surface-air exchange of PCBs that had accumulated in the surface layer over the winter. alpha-HCH was fairly uniformly distributed, spatially and temporally, as expected. This pattern and the derived air concentration of approximately 35 to approximately 100 pg m(-3) agreed well with high volume air data from this region, adding confidence to the operation of the passive samplers and showing that site-to-site differences in sampling rates was not an issue. For other OCPs, highest concentrations were observed during the spring period. This was associated with either (i) their local and/or regional application (gamma-HCH, endosulfan) and (ii) their revolatilization (chlordanes, DDT isomers, dieldrin, and toxaphene). Principal component analysis resulted in clusters for the different target chemicals according to their chemical class/source type. The results of this study demonstrate how such a simple sampling technique can provide both spatial and seasonal information. These data, integrated over seasons, can be used to evaluate contaminant trends and the potential role of large urban centers as sources of some semivolatile compounds to the regional environment, including the Great Lakes ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.