This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.
The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 μm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∼ 100–3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI.
Context. Characterization of directly imaged exoplanets is one of the most eagerly anticipated science functions of the James Webb Space Telescope. MIRI, the mid-IR instrument, has the capability to provide unique spatially resolved photometric data points in a spectral range never before achieved for such objects. Aims. We aim to present the very first on-sky contrast measurements of the MIRI coronagraphs. In addition to a classical Lyot coronagraph at the longest wavelength, this observing mode implements the concept of the four-quadrant phase mask for the very first time in a space telescope. Methods. We observed single stars together with a series of reference stars to measure raw contrasts as they are delivered on the detector, as well as reference-subtracted contrasts.Results. The MIRI coronagraphs achieve raw contrasts better than 10 −3 at the smallest angular separations (within 1 ) and about 10 −5 farther out (beyond 5 ∼ 6 ). Subtracting the residual diffracted light left behind the coronagraph has the potential to bring the final contrast down to the background-and detector-limited noise floor at most angular separations (a few times 10 −5 at less than 1 ). Conclusions. The MIRI coronagraphs behave as expected from simulations. In particular, the raw contrasts for all four coronagraphs are fully consistent with the diffractive model. Contrasts obtained by subtracting reference stars also meet expectations and are fully demonstrated for two four-quadrant phase masks (F1065C and F1140C). The worst contrast, measured at F1550C, is very likely due to a variation in the phase aberrations at the primary mirror during the observations, and not an issue with the coronagraph itself. We did not perform reference star subtraction with the Lyot mask at F2300C, but we anticipate that it would bring the contrast down to the noise floor.
In a cold and stable space environment, the James Webb Space Telescope (JWST or "Webb") reaches unprecedented sensitivities at wavelengths beyond 2 microns, serving most fields of astrophysics. It also extends the parameter space of high-contrast imaging into the near and mid-infrared. Launched in late 2021, JWST underwent a six month commissioning period. In this contribution we focus on the NIRCam Coronagraphy mode which was declared "science ready" on July 10 2022, the last of the 17 JWST observing modes. Essentially, this mode enables the detection of fainter/redder/colder (less massive for a given age) self-luminous exoplanets as well as other faint astrophysical signal in the vicinity of any bright object (stars or galaxies). Here we describe some of the steps and hurdles the commissioning team went through to achieve excellent performance. Specifically, we focus on the Coronagraphic Suppression Verification activity. We were able to produce firm detections at 3.35µm of the white dwarf companion HD 114174 B which is at a separation of 0.5 and a contrast of 10 magnitudes (10 4 fainter than the K∼5.3 mag host star). We compare these first on-sky images with our latest, most informed and realistic end-to-end simulations through the same pipeline. Additionally we provide information on how we succeeded with the target acquisition with all five NIRCam focal plane masks and their four corresponding wedged Lyot stops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.