We report results of a search for weakly interacting massive particles (WIMPS) with the silicon detectors of the CDMS II experiment. This blind analysis of 140.2 kg day of data taken between July 2007 and September 2008 revealed three WIMP-candidate events with a surface-event background estimate of 0.41(-0.08)(+0.20)(stat)(-0.24)(+0.28)(syst). Other known backgrounds from neutrons and 206Pb are limited to <0.13 and <0.08 events at the 90% confidence level, respectively. The exposure of this analysis is equivalent to 23.4 kg day for a recoil energy range of 7-100 keV for a WIMP of mass 10 GeV/c2. The probability that the known backgrounds would produce three or more events in the signal region is 5.4%. A profile likelihood ratio test of the three events that includes the measured recoil energies gives a 0.19% probability for the known-background-only hypothesis when tested against the alternative WIMP+background hypothesis. The highest likelihood occurs for a WIMP mass of 8.6 GeV/c2 and WIMP-nucleon cross section of 1.9×10(-41) cm2.
SuperCDMS is an experiment designed to directly detect weakly interacting massive particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this Letter, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage-assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for ten live days at the Soudan Underground Laboratory. A low energy threshold of 170 eV ee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV=c Independent astrophysical surveys and cosmological studies confirm that dark matter constitutes 27% of the energy density of the Universe (reviewed in [1]). Weakly interacting massive particles (WIMPs) are one of the favored particle candidates for dark matter. Theoretical predictions for WIMP masses, and for WIMP-interaction cross sections on normal matter, both span many orders of magnitude. However, WIMPs may elastically scatter off nuclei with enough energy, and at a sufficient rate, to be detected by laboratory detectors [2]. Measurements of the nuclear-recoil energy spectrum by these experiments can constrain the properties of WIMP dark matter [3][4][5].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.