A series of conformationally restricted congeners of pentamidine in which the flexible pentyl bridge of pentamidine was replaced by trans-1,2-bismethylenecyclopropyl, phenyl, pyridinyl, piperazinyl, homopiperazinyl, and piperidinyl groups were synthesized. The compounds were evaluated for trypanocidal activity in vitro and in vivo against one drug-sensitive and three drug-resistant trypanosome isolates. The DNA binding affinity of the compounds was also studied using calf thymus DNA and poly(dA-dT). The nature of the linker influenced the DNA binding affinity as well as the trypanocidal activity of the compounds. trans-1,2-Bis(4-amidinophenoxymethylene)cyclopropane (1) was over 25-fold more potent than pentamidine against the drug-resistant isolate KETRI 243As-10-3, albeit with comparable DNA binding affinity. N,N'-Bis(4-amidinophenyl)homopiperazine (8) was the most potent trypanocide in vitro against all four trypanosome isolates studied, but N,N'-bis(4-amidinophenyl)piperazine (6) was the most effective agent in vivo against both drug-sensitive and drug-resistant trypanosomes.
The compound 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (MDL73811), a potent inhibitor of S-adenosylmethionine decarboxylase, was effective in mice against six of eight clinical isolates of 7rypano-soma brucei rhodesiense, the causative agent of East African sleeping sickness. In combination with the ornithine decarboxylase inhibitor DL-e-dfloromethylornithine (DFMO; Ornidyl), MDL73811 acted synergistically to cure seven of eight infections. MDL73811 was effective when given singly at 50 to 100 mg/kg of body weight per day for 7 days (osmotic pumps). In combination with subcurative DFMO levels (0.25 to 1.0% in drinking water for 7 days), the curative MDL73811 dose could be lowered to 25 or 50 mgkg, depending on the isolate. Oral administration of the MDL73811-DFMO combination was also effective in an acute infection and in a long-term central nervous system model of 1fypansoma brucei brucei infection. These data indicate that MDL73811 may be effective therapeutically in drug-refractory and late-stage East African typanosomiasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.