PURPOSE. To solve the shortage of donor corneas, a decellularizing method based on hypertonic saline treatment was introduced, and a favorable outcome was observed in pig-to-rabbit lamellar corneal transplantation. This study was an investigation of the efficacy of pig-to-nonhuman primate lamellar corneal transplantation, using both decellularized and fresh porcine corneas to assess feasibility as a substitute for human corneas. METHODS. Nine Chinese rhesus macaques underwent lamellar corneal transplantation using both decellularized (n = 5) and fresh (n = 4) porcine corneas. Clinically acceptable graft size (7.5 mm in diameter) and minimal immunosuppression based on topical and systemic corticosteroids were applied. Rejection signs, histology of porcine grafts, and serial changes in recipients' blood profile, including memory T-cell subset, anti-α-Gal and donor pig-specific antibodies, and complement were evaluated. Changes in aqueous complement concentration were also assessed at 4 weeks after transplantation. RESULTS. Of the decellularized porcine lamellar grafts, 80% remained transparent for more than 6 months, whereas half of the fresh porcine lamellar grafts developed chronic rejection. Rejected grafts showed extensive cellular infiltration, predominantly CD8(+) T lymphocytes and macrophages. Immunologic profiles of the recipients with rejected grafts showed a significant increase in the concentration of aqueous complement, an enhancement of memory T cells, and an abrupt increase in donor pig-specific antibodies. CONCLUSIONS. The findings suggested that decellularized porcine cornea could be a promising substitute for human corneal allograft. Fresh porcine cornea may be a feasible option for a substitute if combined with more potent immunosuppression or if obtained from transgenic pigs with complement-regulatory proteins.
Many surgeries are complicated by the need to anastomose, or reconnect, micron-scale vessels. Although suturing remains the gold standard for anastomosing vessels, it is difficult to place sutures correctly through collapsed lumen, making the procedure prone to failure. Here, we report a multi-phase transitioning peptide hydrogel that can be injected into the lumen of vessels to facilitate suturing. The peptide, which contains a photocaged glutamic acid, forms a solid-like gel in a syringe and can be shear-thin delivered to the lumen of collapsed vessels (where it distends the vessel), and the space between two vessels (where it is used to approximate the vessel ends). Suturing is performed directly through the gel. Light is used to initiate the final gel-sol phase transition that disrupts the hydrogel network, allowing the gel to be removed and blood flow to resume. This gel adds a new tool to the armamentarium for micro- and supermicrosurgical procedures.
Orthotopic xenotransplantation studies represent the final stage in preclinical cancer research and could facilitate the implementation of precision medicine. To date, these xenografts have been tested in immunodeficient animals, but complete elimination of the adaptive immunity is a significant drawback. We present a method of efficient human glioblastoma (GBM) cell engraftment in adult mice with intact immune systems, mediated by a transient blockade of T-cell co-stimulation. Compared to transplants grown in immunodeficient hosts, the resulting tumors more accurately resemble the clinical pathophysiology of patient GBMs, which are characterized by blood-brain-barrier leakage and strong neo-vascularization. We expect our method to have great utility for studying human tumor cell biology, particularly in the field of cancer immunotherapy and in studies on microenvironmental interactions. Given the straightforward approach, the method may also be applicable to other tumor types and additional model organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.