Alzheimer's disease (AD) is pathologically characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain, and thus, the in vivo imaging of plaques and tangles would be beneficial for the early diagnosis of AD. It has been suggested that 5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one (curcumin) may be responsible for low age-adjusted prevalence of AD in India. In the present study, eight novel derivatives of curcumin and 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one (dehydrozingerone) were synthesized and their binding affinities for beta-amyloid (Abeta) aggregates were measured. Of these ligands, fluoropropyl-substituted curcumin (8) showed the highest binding affinity (Ki=0.07 nM), and therefore, 8 was radiolabeled and evaluated as a potential probe for Abeta plaque imaging. Partition coefficient measurement and biodistribution in normal mice demonstrated that [18F]8 has a suitable lipophilicity and reasonable initial brain uptake. Metabolism studies also indicated that [18F]8 is metabolically stable in the brain. These results suggest that [18F]8 is a suitable radioligand for Abeta plaque imaging.
Both PET/CT and 3.0-T whole-body MR imaging appear to provide acceptable accuracy and comparable efficacy for NSCLC staging, but for M-stage determination, each modality has its own advantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.