A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised e ± p scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q 2 , and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions, HERAPDF1.0, with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.
Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections σ cc red for charm production are obtained in the kinematic range of photon virtuality 2.5 ≤ Q 2 ≤ 2000 GeV 2 and Bjorken scaling variable 3 · 10 −5 ≤ x ≤ 5 · 10 −2 . The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive a e-mail: levy@alzt. deep-inelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W ± and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.
Beauty production in deep inelastic scattering with events in which a muon and a jet are observed in the final state has been measured with the ZEUS detector at HERA using an integrated luminosity of 114 pb −1 . The fraction of events with beauty quarks in the data was determined using the distribution of the transverse momentum of the muon relative to the jet. The cross section for beauty production was measured in the kinematic range of photon virtuality, Q 2 > 2 GeV 2 , and inelasticity, 0.05 < y < 0.7, with the requirement of a muon and a jet. Total and differential cross sections are presented and compared to QCD predictions. The beauty contribution to the structure function F 2 was extracted and is compared to theoretical predictions.
Abstract. Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb −1 . The measurements were made in the kinematic range Q 2 < 1 GeV 2 , 0.20 < y < 0.85 and x IP < 0.025, where Q 2 is the photon virtuality, y is the inelasticity and x IP is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E jet T , were required to satisfy E jet T > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range −1.5 < η jet < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton.
The production of charm and beauty quarks in ep interactions has been measured with the ZEUS detector at HERA for squared four-momentum exchange Q 2 > 20 GeV 2 , using an integrated luminosity of 126 pb −1 .Charm and beauty quarks were identified through their decays into muons. Differential cross sections were measured
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.