The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\mu}+ and {\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive
The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CPinvariance violation in the lepton sector, has begun with the recent discovery that θ 13 > 0. The measured value of θ 13 is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EUROν Design Study consortium. EUROν coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EUROν baseline accelerator facility will provide 10 21 muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.
Charged particle acceleration using solid-state nanostructures has attracted attention in recent years as a method of achieving ultra-high-gradient acceleration in the TV/m domain. More concretely, metallic hollow nanostructures could be suitable for particle acceleration through the excitation of wakefields by a laser or a high-intensity charged particle beam in a high-density solid-state plasma. For instance, due to their special channeling properties as well as optoelectronic and thermo-mechanical properties, carbon nanotubes could be an excellent medium for this purpose. This article investigates the feasibility of generating ultra-high-gradient acceleration using carbon nanotube arrays, modeled as solid-state plasmas in conventional particle-in-cell simulations performed in a two-dimensional axisymmetric (quasi-3D) geometry. The generation of beam-driven plasma wakefields depending on different parameters of the solid structure is discussed in detail. Furthermore, by adopting an effective plasma-density approach, existing analytical expressions, originally derived for homogeneous plasmas, can be used to describe wakefields driven in periodic non-uniform plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.