We present the third Fermi Large Area Telescope (LAT) source catalog (3FGL) of sources in the 100 MeV-300 GeV range. Based on the first 4 yr of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the Second Fermi LAT catalog, the 3FGL catalog incorporates twice as much data, as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse γ-ray emission, a refined procedure for source detection, and improved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources above 4σ significance, with source location regions, spectral properties, and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 238 sources are considered as identified based on angular extent or correlated variability (periodic or otherwise) observed at other wavelengths. For 1010 sources we have not found plausible counterparts at other wavelengths. More than 1100 of the identified or associated sources are active galaxies of the blazar class; several other classes of non-blazar active galaxies are also represented in the 3FGL. Pulsars represent the largest Galactic source class. From source counts of Galactic sources we estimate that the contribution of unresolved sources to the Galactic diffuse emission is ∼3% at 1 GeV.
We present the second catalog of high-energy γ -ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ -ray-producing source classes.
We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4σ. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.
We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called "extragalactic" diffuse γ-ray emission (EGB). This component of the diffuse γ-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modelling of the bright foreground diffuse Galactic γ-ray emission (DGE), the detected LAT sources and the solar γ-ray emission. We find the spectrum of the EGB is consistent with a power law with differential spectral index γ = 2.41 ± 0.05 and intensity, I(> 100 MeV) = (1.03 ± 0.17) × 10 −5 cm −2 s −1 sr −1 , where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data. PACS numbers: 95.30.Cq,95.55.Ka,95.85.Pw,96.50.sb,98.70.Sa Introduction: The high-energy diffuse γ-ray emission is dominated by γ-rays produced by cosmic rays (CR) interacting with the Galactic interstellar gas and radiation fields, the so-called diffuse Galactic emission (DGE). A much fainter component, commonly designated as "extragalactic γ-ray background" (EGB), was first detected against the bright DGE foreground by the SAS-2 satellite [1] and later confirmed by analysis of the EGRET data [2]. The EGB by definition has an isotropic sky distribution and is considered by many to be the superposition of contributions from unresolved extragalactic sources including active galactic nuclei, starburst galaxies and γ-ray bursts ([3] and references therein) and truly-diffuse emission processes. These diffuse processes include the possible signatures of large-scale structure formation [4], emission produced by the interactions of 3 ultra-high-energy CRs with relic photons [5], the annihilation or decay of dark matter, and many other processes (e.g., [3] and references therein). However, the diffuse γ-ray emission from inverse Compton (IC) scattering by an extended Galactic halo of CR electrons could also be attributed to such a component if the size of the halo is large enough (i.e., ∼ 25 kpc) [6]. In addition, γ-ray emission from CRs interacting in populations of small solar system bodies [7] and the all-sky contribution of IC scattering of solar photons with local CRs can provide contributions [8][9][10]. Hence, an extragalactic origin for such a component is not clear, even though we will use the abbreviation 'EGB' throughout this paper.In this paper, we present analysis and first results for the EGB derived from the Fermi Large Area Telescope (LAT) [11] data. Our analysis uses data from the initial 10 months of the science phase of the mission. Essential to this study is an event-level data selection with a higher level of background rejection than the standard LAT data selections, and improvements to the instrument simulation. These have been made following extensive on-orbit studies of the LAT performance and of charged particle backgrounds. Together, these improvements over the pre-launch modelling and bac...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.