A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H → γγ and H → ZZ → 4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is m H ¼ 125.09 AE 0.21 ðstatÞ AE 0.11 ðsystÞ GeV. DOI: 10.1103/PhysRevLett.114.191803 PACS numbers: 14.80.Bn, 13.85.Qk The study of the mechanism of electroweak symmetry breaking is one of the principal goals of the CERN LHC program. In the standard model (SM), this symmetry breaking is achieved through the introduction of a complex doublet scalar field, leading to the prediction of the Higgs boson H [1-6], whose mass m H is, however, not predicted by the theory. In 2012, the ATLAS and CMS Collaborations at the LHC announced the discovery of a particle with Higgs-boson-like properties and a mass of about 125 GeV [7][8][9]. The discovery was based primarily on mass peaks observed in the γγ and ZZ → l þ l − l 0þ l 0−(denoted H → ZZ → 4l for simplicity) decay channels, where one or both of the Z bosons can be off shell and where l and l 0 denote an electron or muon. With m H known, all properties of the SM Higgs boson, such as its production cross section and partial decay widths, can be predicted. Increasingly precise measurements [10][11][12][13] have established that all observed properties of the new particle, including its spin, parity, and coupling strengths to SM particles are consistent within the uncertainties with those expected for the SM Higgs boson.The ATLAS and CMS Collaborations have independently measured m H using the samples of proton-proton collision data collected in 2011 and 2012, commonly referred to as LHC Run 1. The analyzed samples correspond to approximately 5 fb −1 of integrated luminosity at ffiffi ffi s p ¼ 7 TeV, and 20 fb −1 at ffiffi ffi s p ¼ 8 TeV, for each experiment. Combined results in the context of the separate experiments, as well as those in the individual channels, are presented in Refs. [12,[14][15][16].This Letter describes a combination of the Run 1 data from the two experiments, leading to improved precision for m H . Besides its intrinsic importance as a fundamental parameter, improved knowledge of m H yields more precise predictions for the other Higgs boson properties. Furthermore, the combined mass measurement provides a first step towards combinations of other quantities, such as the couplings. In the SM, m H is related to the values of the masses of the W boson and top quark through loopinduced effects. Taking into account other measured SM quantities, the comparison of the measurements of the Higgs boson, W boson, and top quark masses can be used to directly test the consistency of the SM [17] and thus to search for evidence of physics beyond the SM.The combination is performed usin...
New sets of parameters (“tunes”) for the underlying-event (UE) modelling of the pythia8, pythia6 and herwig++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE proton–proton () data at and to UE proton–antiproton () data from the CDF experiment at lower , are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton–proton collisions at 13. In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons are presented of the UE tunes to “minimum bias” (MB) events, multijet, and Drell–Yan ( lepton-antilepton+jets) observables at 7 and 8, as well as predictions for MB and UE observables at 13.
Properties of the Higgs boson with mass near 125 are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include , , , , , and pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1 at 7 and up to 19.7 at 8. From the high-resolution and channels, the mass of the Higgs boson is determined to be . For this mass value, the event yields obtained in the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. No significant deviations are found.
The mass of the W boson, a mediator of the weak force between elementary particles, is tightly constrained by the symmetries of the standard model of particle physics. The Higgs boson was the last missing component of the model. After observation of the Higgs boson, a measurement of the W boson mass provides a stringent test of the model. We measure the W boson mass, M W , using data corresponding to 8.8 inverse femtobarns of integrated luminosity collected in proton-antiproton collisions at a 1.96 tera–electron volt center-of-mass energy with the CDF II detector at the Fermilab Tevatron collider. A sample of approximately 4 million W boson candidates is used to obtain M W = 80 , 433.5 ± 6.4 stat ± 6.9 syst = 80 , 433.5 ± 9.4 MeV / c 2 , the precision of which exceeds that of all previous measurements combined (stat, statistical uncertainty; syst, systematic uncertainty; MeV, mega–electron volts; c , speed of light in a vacuum). This measurement is in significant tension with the standard model expectation.
A description is provided of the performance of the CMS detector for photon reconstruction and identification in proton-proton collisions at a centre-of-mass energy of 8 TeV at the CERN LHC. Details are given on the reconstruction of photons from energy deposits in the electromagnetic calorimeter (ECAL) and the extraction of photon energy estimates. The reconstruction of electron tracks from photons that convert to electrons in the CMS tracker is also described, as is the optimization of the photon energy reconstruction and its accurate modelling in simulation, in the analysis of the Higgs boson decay into two photons. In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons from H → γγ decays. Different photon identification methods are discussed and their corresponding selection efficiencies in data are compared with those found in simulated events.The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass/scintillator hadron calorimeter (HCAL), each one composed of a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. A more detailed description of the CMS detector can be found in Ref. [1].The pseudorapidity coordinates, η, of detector elements are measured with respect to the coordinate system origin at the centre of the detector, whereas the pseudorapidity of reconstructed particles and jets is measured with respect to the interaction vertex from which they originate. Photon reconstruction Photon reconstructionPhotons for use as signals or signatures in measurements and searches, rather than for use in the construction of jets or missing transverse energy, are reconstructed from energy deposits in the ECAL using algorithms that constrain the clusters to the size and shape expected for electrons and photons with p T 15 GeV. The algorithms do not use any hypothesis as to whether the particle originating from the interaction point is a photon or an electron, consequently electrons from Z → e + e − events, for which pure samples with a well defined invariant mass can be selected, can provide excellent measurements of the photon trigger, reconstruction, and identification efficiencies, and of the photon energy scale and resolution. The reconstructed showers are generally limited to a fiducial region excluding the last two crystals at each end of the barrel (|η| < 1.4442). The outer circumferences of the endcaps are obscured by services passing between the barrel and the endcaps, and this area is removed from the fiducial region by excluding the first ring of trigger towers of the endcaps (|η| > 1.566). The fiducial region terminates at |η| = 2.5...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.