A retrovirus belonging to the family of recently discovered human T-cell leukemia viruses (HTLV), but clearly distinct from each previous isolate, has been isolated from a Caucasian patient with signs and symptoms that often precede the acquired immune deficiency syndrome (AIDS). This virus is a typical type-C RNA tumor virus, buds from the cell membrane, prefers magnesium for reverse transcriptase activity, and has an internal antigen (p25) similar to HTLV p24. Antibodies from serum of this patient react with proteins from viruses of the HTLV-I subgroup, but type-specific antisera to HTLV-I do not precipitate proteins of the new isolate. The virus from this patient has been transmitted into cord blood lymphocytes, and the virus produced by these cells is similar to the original isolate. From these studies it is concluded that this virus as well as the previous HTLV isolates belong to a general family of T-lymphotropic retroviruses that are horizontally transmitted in humans and may be involved in several pathological syndromes, including AIDS.
The etiological agent of AIDS, LAV/HTLV-III, is common in Central Africa but is not endemic in other areas of that continent. A novel human retrovirus, distinct from LAV/HTLV-III, has now been isolated from two AIDS patients from West Africa. Partial characterization of this virus revealed that it has biological and morphological properties very similar to LAV but that it differs in some of its antigenic components. Although the core antigens may share some common epitopes, the West African AIDS retrovirus and LAV differ substantially in their envelope glycoproteins. The envelope antigen of the West African virus can be recognized by serum from a macaque with simian AIDS infected by the simian retrovirus termed STLV-IIImac, suggesting that the West African AIDS virus may be more closely related to this simian virus than to LAV. Hybridization experiments with LAV subgenomic probes further established that this new retrovirus, here referred to as LAV-II, is distantly related to LAV and distinct from STLV-IIImac.
Abstract. In this paper we used a multiparametric approach to analyze extensively the events occurring during apoptotic cell death of thymocytes, and furthermore, we asked whether alterations in mitochondrial structure and function are occurring in early stages of apoptosis. A multiparametric quantitative analysis was performed on normal or apoptotic thymocytes emerging from a few-hour culture performed in culture medium or in the presence of dexamethasone. Simultaneous detection of light scattering properties, integrity of plasma membrane (trypan blue exclusion), chromatin condensation (AO/EB staining of entire cells or PI staining of nuclei), and DNA fragmentation (in situ nick-translation in apoptotic cells) allowed a precise analysis of the preapoptotic and apoptotic stages. Moreover a thorough study of mitochondrial transmembrane potential (Aq~m) assessed following in a time course study the uptake by apoptotic cells of the cationic lipophilic dye DiOC6(3) or the J-aggregate-forming cation JC-1, indicates that a drop in Atem occurs very early in thymocyte apoptosis, before DNA fragmentation. This is associated with alteration in mitochondrial structure assessed by cytofluorimetric study of NAO uptake in apoptotic cells. Finally these dramatic alterations in mitochondrial structure and function occurring in early stages of apoptosis were confirmed by confocal and electron microscopy analysis. p ROGRAMMED Cell Death (PCD) 1 of thymocytes is a crucial event that is involved in the negative intrathymic selection of the T cell repertoire, leading to the clonal deletion of autoreactive T cells and to the establishment of self-tolerance (10, 4). This death of physiological significance, called apoptosis, is an active process of self-destruction associated to profound structural changes including a nuclear collapse characterized by the condensation of chromatin and fragmentation of DNA into single and multiple oligonucleosomes leading to a final and irreversible cell destruction (2,20,46).It was stated that no marked changes in energy metabo-
One of the difficulties in understanding the complex pathology of human immunodeficiency virus (HIV) infection is to explain the progressive depletion of the CD4 helper T cell population and consequently the destruction of the immune system. Although cytopathic effects of HIV are observed in vitro, they cannot in vivo account for CD4 T cell depletion because relatively few cells are productively infected. Thus immunological mechanisms must be envisaged. We have found that peripheral blood lymphocytes (PBLs) from asymptomatic HIV-infected individuals are primed for a suicide process known as apoptosis or programmed cell death (PCD). DNA fragmentation characteristic of apoptosis was enhanced by stimulation of lymphocytes with ionomycin, a known inducer of apoptosis in suitably primed cells. Identification of the T cell subpopulations programmed for apoptosis indicated that both CD4+ and CD8+ cells died when cultured without stimulation or when polyclonally stimulated with ionomycin. Activation-induced cell death was also observed after stimulation with self-MHC class II-dependent superantigens, namely bacterial toxins from Staphylococcus (SEB), Streptococcus (ETA), and Myocoplasma (MAM) and under these conditions the CD4+ T cells were preferentially affected. To explore whether new macromolecular synthesis were required for apoptosis, various known inhibitors of apoptosis such as cycloheximide, cyclosporin A, Zn2+, or EGTA were tested. Activation-induced apoptosis was found sensitive to these inhibitors, indicating an active mechanism, but apoptosis observed in nonstimulated cultures was not, suggesting that these cells already contained the complete machinery for death. Prevention of apoptosis could be obtained in the presence of a mixture of cytokines and the minimal signal necessary for this prevention was IL-1 alpha and IL-2. Finally, a correlation between PCD and AIDS-pathogenesis was suggested by the comparison of lymphocytes from lentivirus-infected primates suceptible (SIV-infected macaques) and resistant (HIV-infected chimpanzees) to AIDS. Altogether our results suggest that, during HIV or SIV infection, PCD may contribute in vivo to the deletion of reactive T cells after antigenic stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.