We describe the public ESO near-IR variability survey (VVV) scanning the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high. The survey will take 1929 h of observations with the 4-m VISTA telescope during 5 years (2010-2014), covering ˜109 point sources across an area of 520 deg2, including 33 known globular clusters and ˜350 open clusters. The final product will be a deep near-IR atlas in five passbands (0.9-2.5 μm) and a catalogue of more than 106 variable point sources. Unlike single-epoch surveys that, in most cases, only produce 2-D maps, the VVV variable star survey will enable the construction of a 3-D map of the surveyed region using well-understood distance indicators such as RR Lyrae stars, and Cepheids. It will yield important information on the ages of the populations. The observations will be combined with data from MACHO, OGLE, EROS, VST, Spitzer, HST, Chandra, INTEGRAL, WISE, Fermi LAT, XMM-Newton, GAIA and ALMA for a complete understanding of the variable sources in the inner Milky Way. This public survey will provide data available to the whole community and therefore will enable further studies of the history of the Milky Way, its globular cluster evolution, and the population census of the Galactic Bulge and center, as well as the investigations of the star forming regions in the disk. The combined variable star catalogues will have important implications for theoretical investigations of pulsation properties of stars
Context. The ESO public survey VISTA variables in the Vía Láctea (VVV) started in 2010. VVV targets 562 sq. deg in the Galactic bulge and an adjacent plane region and is expected to run for about five years. Aims. We describe the progress of the survey observations in the first observing season, the observing strategy, and quality of the data obtained. Methods. The observations are carried out on the 4-m VISTA telescope in the ZY JHK s filters. In addition to the multi-band imaging the variability monitoring campaign in the K s filter has started. Data reduction is carried out using the pipeline at the Cambridge Astronomical Survey Unit. The photometric and astrometric calibration is performed via the numerous 2MASS sources observed in each pointing. Results. The first data release contains the aperture photometry and astrometric catalogues for 348 individual pointings in the ZY JHK s filters taken in the 2010 observing season. The typical image quality is ∼0. 9−1. 0. The stringent photometric and image quality requirements of the survey are satisfied in 100% of the JHK s images in the disk area and 90% of the JHK s images in the bulge area. The completeness in the Z and Y images is 84% in the disk, and 40% in the bulge. The first season catalogues contain 1.28 × 10 8 stellar sources in the bulge and 1.68 × 10 8 in the disk area detected in at least one of the photometric bands. The combined, multi-band catalogues contain more than 1.63 × 10 8 stellar sources. About 10% of these are double detections because of overlapping adjacent pointings. These overlapping multiple detections are used to characterise the quality of the data. The images in the JHK s bands extend typically ∼4 mag deeper than 2MASS. The magnitude limit and photometric quality depend strongly on crowding in the inner Galactic regions. The astrometry for K s = 15−18 mag has rms ∼ 35−175 mas. Conclusions. The VVV Survey data products offer a unique dataset to map the stellar populations in the Galactic bulge and the adjacent plane and provide an exciting new tool for the study of the structure, content, and star-formation history of our Galaxy, as well as for investigations of the newly discovered star clusters, star-forming regions in the disk, high proper motion stars, asteroids, planetary nebulae, and other interesting objects.
Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims. This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods. Following the methodology presented in the first paper of the series, wide-field, deep JHK s VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results. We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 10 3 M ) clusters. They are highly obscured (A V ∼ 5−24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ∼30-50 M for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.