We present a search at the Jefferson Laboratory for new forces mediated by sub-GeV vector bosons with weak coupling α' to electrons. Such a particle A' can be produced in electron-nucleus fixed-target scattering and then decay to an e + e- pair, producing a narrow resonance in the QED trident spectrum. Using APEX test run data, we searched in the mass range 175-250 MeV, found no evidence for an A'→ e+ e- reaction, and set an upper limit of α'/α ~/= 10(-6). Our findings demonstrate that fixed-target searches can explore a new, wide, and important range of masses and couplings for sub-GeV forces.
We present the first direct experimental evidence for the charge excess in high-energy particle showers and corresponding radio emission predicted nearly 40 years ago by Askaryan. We directed picosecond pulses of GeV bremsstrahlung photons at the SLAC Final Focus Test Beam into a 3.5 ton silica sand target, producing electromagnetic showers several meters long. A series of antennas spanning 0.3 to 6 GHz detected strong, subnanosecond radio-frequency pulses produced by the showers. Measurements of the polarization, coherence, timing, field strength vs shower depth, and field strength vs frequency are completely consistent with predictions. These measurements thus provide strong support for experiments designed to detect high-energy cosmic rays such as neutrinos via coherent radio emission from their cascades.
We report on a precision measurement of the parity-violating asymmetry in fixed target electronelectron (Møller) scattering: AP V = (−131 ± 14 (stat.) ± 10 (syst.)) × 10 −9 , leading to the determination of the weak mixing angle sin 2 θ eff W = 0.2397 ± 0.0010 (stat.) ± 0.0008 (syst.), evaluated at Q 2 = 0.026 GeV 2 . Combining this result with the measurements of sin 2 θ eff W at the Z 0 pole, the running of the weak mixing angle is observed with over 6σ significance. The measurement sets constraints on new physics effects at the TeV scale.PACS numbers: 11.30. Er, 12.15.Lk, 12.15.Mm, 13.66.Lm, 13.88.+e, 14.60.Cd Precision measurements of weak neutral current processes at low energies rigorously test the Standard Model of electroweak interactions. Such measurements are sensitive to new physics effects at TeV energies, and are complementary to searches at high energy colliders.One class of low-energy electroweak measurements involves scattering of longitudinally polarized electrons from unpolarized targets, allowing for the determination of a parity-violating asymmetry Z is due to higher order amplitudes involving virtual weak vector bosons and fermions in quantum loops, referred to as electroweak radiative corrections [4,5].To date, the most precise low-energy determinations of the weak mixing angle come from studies of parity violation in atomic transitions [6] and measurements of the neutral current to charge current cross section ratios in neutrino-nucleon deep inelastic scattering [7]. In this Letter, we present a measurement of the weak mixing angle in electron-electron (Møller) scattering, a purely leptonic reaction with little theoretical uncertainty. We have previously reported the first observation of A P V in Møller scattering [8]. Here, we report on a significantly improved measurement of A P V resulting in a precision determination of sin 2 θ eff W at low momentum transfer. At a beam energy of ≃ 50 GeV available at End Station A at SLAC and a center-of-mass scattering angle of 90• , A P V in Møller scattering is predicted to be ≃ 320 parts per billion (ppb) at tree level [9]. Electroweak radiative corrections [4,5] and the experimental acceptance reduce the measured asymmetry by more than 50%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.