Neural stem and precursor cells persist postnatally throughout adulthood and are capable of responding to numerous endogenous and exogenous signals by modifying their proliferation and differentiation. Whereas adult neurogenesis has been extensively studied in the dentate gyrus of the hippocampal formation and in the subventricular zone adjacent to the wall of the lateral ventricles, we and others have recently reported constitutive adult neurogenesis in other brain structures, including the hypothalamus. In this study, we used immunohistochemistry to study the expression of the neuroblast marker doublecortin (DCX), and compared its expression pattern in adult ovine, mouse, and human hypothalamic tissues. Our results indicate that DCX-positive cells resembling immature and developing neurons occur in a wide range of hypothalamic nuclei in all three species, although with different distribution patterns. In addition, the morphology of DCX-positive cells varied depending on their location. DCX-positive cells near the third ventricle had the morphology of very immature neuroblasts, a round shape with no processes, whereas those located deeper in the parenchyma such as in the ventromedial nucleus were fusiform and showed a bipolar morphology. Extending this observation, we showed that among the cohort of immature neurons entering the ventromedial nucleus, some appeared to undergo maturation, as revealed by the partial colocalization of DCX with markers of more mature neurons, e.g., human neuronal protein C and D (HuC/D). This study provides further confirmation of the existence of an adult hypothalamic neurogenic niche and argues for the potential existence of a migratory path within the hypothalamus.
We reviewed radiographs and CT scans of 38 total hip arthroplasties which had dislocated (36 posteriorly; 2 anteriorly) and compared the alignment ofthe prosthetic components with those of 14 uncomplicated arthroplasties. No difference was found between the alignment of the prosthetic components in the two groups. In the seven patients who had reoperations, the cause of dislocation diagnosed by CT was confirmed in only two cases (one retroversion of the cup and one protruding osteophyte). Muscular imbalance rather than malposition of the components was the major factor determining dislocation. CT allows accurate measurement of cup and neck anteversion but contributes little to preoperative planning.
The adult brain contains niches of neural stem cells that continuously add new neurons to selected circuits throughout life. Two niches have been extensively studied in various mammalian species including humans, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. Recently, studies conducted mainly in rodents have identified a third neurogenic niche in the adult hypothalamus. In order to evaluate whether a neural stem cell niche also exists in the adult hypothalamus in humans, we performed multiple immunofluorescence labeling to assess the expression of a panel of neural stem/progenitor cell (NPC) markers (Sox2, nestin, vimentin, GLAST, GFAP) in the human hypothalamus and compared them with the mouse, rat and a non-human primate species, the gray mouse lemur (Microcebus murinus). Our results show that the adult human hypothalamus contains four distinct populations of cells that express the five NPC markers: (a) a ribbon of small stellate cells that lines the third ventricular wall behind a hypocellular gap, similar to that found along the lateral ventricles, (b) ependymal cells, (c) tanycytes, which line the floor of the third ventricle in the tuberal region, and (d) a population of small stellate cells in the suprachiasmatic nucleus. In the mouse, rat and mouse lemur hypothalamus, co-expression of NPC markers is primarily restricted to tanycytes, and these species lack a ventricular ribbon. Our work thus identifies four cell populations with the antigenic profile of NPCs in the adult human hypothalamus, of which three appear specific to humans.
The position of the acetabular implant plays a dominant role in the displacement of a total hip prosthesis. CT allows precise measurement of the position of the cup, but the influence of pelvic rotation on this measurement is unknown. The aim of this study was to determine, in a group of healthy subjects, whether a pelvic equilibrium exists specific to each individual, and whether this is constant over time on the one hand and between the standing and lying positions on the other. The study concerned 15 men and 9 women with a mean age of 31 years. Each subject had strictly lateral radiographs of the pelvis, lying and standing, repeated at two different times. Pelvic version was measured in these radiographs. Each individual had a pelvic position constant over time, both in the lying and standing positions. However, there were important variations of the position of the pelvis during passage from the lying to the standing position: 22 patients had retroversion of the pelvis by a mean of 7 degrees (2-18 degrees) and 2 others had an anteversion of 3 degrees. These major variations of the pelvic position between the standing and lying positions explain why CT studies made in the lying position do not allow for the anteversion of the cup in the standing position, which is close to the dynamic situation during which displacement may occur. Thus, an excessive anteversion of the cup may be masked when the scan is made in the lying position, since in this position the anteversion of the pelvis leads to retroversion of the cup. The error may reach 20 degrees, so that we recommend that CT measurements made without allowing for the position of the pelvis should be interpreted with caution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.