In the last campaign, the TJ-II heliac has been operated under lithium-coated walls, representing the first stellarator ever working under these boundary conditions. Enhanced density control and discharge reproducibility, leading to the drastic enlargement of the operational window, have been obtained. A strong decrease in recycling together with changes in the shot by shot fuelling characteristics and in the wall particle inventory have been recorded. These changes, associated with the new wall scenario, had led to a long-lasting good density control. The new conditions were also mirrored in the plasma profiles under NBI heating scenarios with increased peaking of the electron density profiles. Fuelling rates corresponding just to the nominal beam current were obtained for the first time, and transitions from bell to dome-type plasma profiles, with different collapsing limits, were observed and tentatively ascribed to changes in the local edge power balance. ELM-type activity was observed in concomitance to reduced fluctuation levels and confinement improvement. Record values of plasma energy content were measured at central densities up to 8 × 10 19 m −3 under Li-coated walls.
This paper presents the latest results on confinement studies in the TJ-II stellarator. The inherently strong plasma–wall interaction of TJ-II has been successfully reduced after lithium coating by vacuum evaporation. Besides H retention and low Z, Li was chosen because there exists a reactor-oriented interest in this element, thus giving special relevance to the investigation of its properties. The Li-coating has led to important changes in plasma performance. Particularly, the effective density limit in NBI plasmas has been extended reaching central values of 8 × 1019 m−3 and T e ≈ 250–300 eV, with peaked density, rather flat T e profiles and higher ion temperatures. Due to the achieved density control, a second type of transition has been added to the low density ones previously observed in ECRH plasmas: higher density transitions characterized by the fall in Hα emission, the onset of steep density gradient and the reduction in the turbulence; which are characteristics of transition to the H mode. Confinement studies in ECH plasmas indicate that lowest order magnetic resonances, even in a low shear environment, locally reduce the effective electron heat diffusivities, while Alfven eigenmodes destabilized in NBI plasmas can influence fast ion confinement.
First plasmas have been successfully achieved in the TJ-II stellarator using electron cyclotron resonance heating (f = 53.2 GHz, P ECRH = 250 kW). Initial experiments have explored the TJ-II flexibility in a wide range of plasma volumes, different rotational transform and magnetic well values. In this paper, the main results of this campaign are presented and, in particular, the influence of plasma wall interaction phenomena on TJ-II operation is discussed briefly.
This paper presents an overview of experimental results and progress made in investigating the link between magnetic topology, electric fields and transport in the TJ-II stellarator. The smooth change from positive to negative electric field observed in the core region as the density is raised is correlated with global and local transport data. A statistical description of transport is emerging as a new way to describe the coupling between profiles, plasma flows and turbulence. TJ-II experiments show that the location of rational surfaces inside the plasma can, in some circumstances, provide a trigger for the development of core transitions, providing a critical test for the various models that have been proposed to explain the appearance of transport barriers in relation to magnetic topology. In the plasma core, perpendicular rotation is strongly coupled to plasma density, showing a reversal consistent with neoclassical expectations. In contrast, spontaneous sheared flows in the plasma edge appear to be coupled strongly to plasma turbulence, consistent with the expectation for turbulent driven flows. The local injection of hydrocarbons through a mobile limiter and the erosion produced by plasmas with well-known edge parameters opens the possibility of performing carbon transport studies, relevant for understanding co-deposit formation in fusion devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.