A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon final states. The search uses 36.1 fb −1 of proton-proton collision data, collected at √ s = 13 TeV by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the Standard Model prediction is observed. Upper limits at 95% credibility level are set on the cross-section times branching ratio for resonances decaying into dileptons, which are converted to lower limits on the resonance mass, up to 4.1 TeV for the E 6 -motivated Z χ . Lower limits on the qq contact interaction scale are set between 2.4 TeV and 40 TeV, depending on the model. Conclusion 21A Dilepton invariant mass tables 22The ATLAS collaboration 44 IntroductionThis article presents a search for resonant and non-resonant new phenomena, based on the analysis of dilepton final states (ee and µµ) in proton-proton (pp) collisions with the ATLAS detector at the Large Hadron Collider (LHC) operating at √ s = 13 TeV. The data set was collected during 2015 and 2016, and corresponds to an integrated luminosity of 36.1 fb −1 . In the search for new physics carried out at hadron colliders, the study of -1 - JHEP10(2017)182dilepton final states provides excellent sensitivity to a large variety of phenomena. This experimental signature benefits from a fully reconstructed final state, high signal-selection efficiencies and relatively small, well-understood backgrounds, representing a powerful test for a wide range of theories beyond the Standard Model (SM).Models with extended gauge groups often feature additional U(1) symmetries with corresponding heavy spin-1 bosons. These bosons, generally referred to as Z , would manifest as a narrow resonance through its decay, in the dilepton mass spectrum. Among these models are those inspired by Grand Unified Theories, which are motivated by gauge unification or a restoration of the left-right symmetry violated by the weak interaction. Examples considered in this article include the Z bosons of the E 6 -motivated [1,2] theories as well as Minimal models [3]. The Sequential Standard Model (SSM) [2] is also considered due to its inherent simplicity and usefulness as a benchmark model. The SSM manifests a Z SSM boson with couplings to fermions equal to those of the SM Z boson.The most sensitive previous searches for a Z boson decaying into the dilepton final state were carried out by the ATLAS and CMS collaborations [4,5]. Using 3.2 fb −1 of pp collision data at √ s = 13 TeV collected in 2015, ATLAS set a lower exclusion limit at 95% credibility level (CL) on the Z SSM pole mass of 3.4 TeV for the combined ee and µµ channels. Similar limits were set by CMS using the 2015 data sample.This search is also sensitive to a series of other models that predict the presence of narrow dilepton resonances. These models include the Randall-Sundrum (RS) model [6] with a warped extra dimension giving rise to spin-2 graviton excitations, the quantum black-hole model [7], the Z * model [8], and the minimal wal...
During 2015 the ATLAS experiment recorded of proton–proton collision data at a centre-of-mass energy of . The ATLAS trigger system is a crucial component of the experiment, responsible for selecting events of interest at a recording rate of approximately 1 kHz from up to 40 MHz of collisions. This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton–proton collision data.
The ATLAS CollaborationResults of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 36.1 fb −1 at a centre-of-mass energy of 13 TeV collected in 2015 and 2016 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons (e or µ). Several signal regions are considered with increasing requirements on the missing transverse momentum above 250 GeV. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, and supersymmetric particles in several compressed scenarios.
Dijet events are studied in the proton-proton collision data set recorded at ffiffi ffi s p ¼ 13 TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to integrated luminosities of 3.5 fb −1 and 33.5 fb −1 respectively. Invariant mass and angular distributions are compared to background predictions and no significant deviation is observed. For resonance searches, a new method for fitting the background component of the invariant mass distribution is employed. The data set is then used to set upper limits at a 95% confidence level on a range of new physics scenarios. Excited quarks with masses below 6.0 TeV are excluded, and limits are set on quantum black holes, heavy W 0 bosons, W Ã bosons, and a range of masses and couplings in a Z 0 dark matter mediator model. Model-independent limits on signals with a Gaussian shape are also set, using a new approach allowing factorization of physics and detector effects. From the angular distributions, a scale of new physics in contact interaction models is excluded for scenarios with either constructive or destructive interference. These results represent a substantial improvement over those obtained previously with lower integrated luminosity.
Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb −1 of pp collisions at √ s = 13 TeV with the ATLAS detectorThe ATLAS collaboration E-mail: atlas.publications@cern.ch Abstract: A search for heavy neutral Higgs bosons and Z bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb −1 from proton-proton collisions at √ s = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to τ + τ − with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for Z bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude tan β > 1.0 for m A = 0.25 TeV and tan β > 42 for m A = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, Z SSM with m Z < 2.42 TeV is excluded at 95% confidence level, while Z NU with m Z < 2.25 TeV is excluded for the non-universal G(221) model that exhibits enhanced couplings to third-generation fermions. 6 Background estimation 10 6.1 Jet background estimate in the τ had τ had channel 10 6.1. The ATLAS collaboration 37-1 - JHEP01(2018)0551 IntroductionThe discovery of a scalar particle [1, 2] at the Large Hadron Collider (LHC) [3] has provided important insight into the mechanism of electroweak symmetry breaking. Experimental studies of the new particle [4][5][6][7][8] demonstrate consistency with the Standard Model (SM) Higgs boson [9][10][11][12][13][14]. However, it remains possible that the discovered particle is part of an extended scalar sector, a scenario that is predicted by a number of theoretical arguments [15,16]. The Minimal Supersymmetric Standard Model (MSSM) [15,17,18] is the simplest extension of the SM that includes supersymmetry. The MSSM requires two Higgs doublets of opposite hypercharge. Assuming that CP symmetry is conserved, this results in one CPodd (A) and two CP-even (h, H) neutral Higgs bosons and two charged Higgs bosons (H ± ). At tree level, the properties of the Higgs sector in the MSSM depend on only two non-SM parameters, which can be chosen to be the mass of the CP-odd Higgs boson, m A , and the ratio of the vacuum expectation values of the two Higgs doublets, tan β. Beyond tree level, a number of additional parameters affect the Higgs sector, the choice of which defines various MSSM benchmark scenarios. In the m mod+ h scenario [19], the top-squark mixing parameter is chosen such that the mass of the lightest CP-even Higgs boson, m h , is close to the measured mass of the Higgs boson that was discovered at the LHC. A different approach is employed in the hMSSM scenario [20,21] in which the measured value of m h can be used, with certain assumptions, to predict the remaining masses and couplings of the MSSM Higgs bosons without explicit reference to the sof...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.