Structural, chemical and electronic properties of electroforming in the TiN/HfO(2) system are investigated at the nanometre scale. Reversible resistive switching is achieved by biasing the metal oxide using conductive atomic force microscopy. An original method is implemented to localize and investigate the conductive region by combining focused ion beam, scanning spreading resistance microscopy and scanning transmission electron microscopy. Results clearly show the presence of a conductive filament extending over 20 nm. Its size and shape is mainly tuned by the corresponding HfO(2) crystalline grain. Oxygen vacancies together with localized states in the HfO(2) band gap are highlighted by electron energy loss spectroscopy. Oxygen depletion is seen mainly in the central part of the conductive filament along grain boundaries. This is associated with partial amorphization, in particular at both electrode/oxide interfaces. Our results are a direct confirmation of the filamentary conduction mechanism, showing that oxygen content modulation at the nanometre scale plays a major role in resistive switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.