The Raman Laser Spectrometer (RLS) on board the ESA/Roscosmos ExoMars 2020 mission will provide precise identification of the mineral phases and the possibility to detect organics on the Red Planet. The RLS will work on the powdered samples prepared inside the Pasteur analytical suite and collected on the surface and subsurface by a drill system. Raman spectroscopy is a well-known analytical technique based on the inelastic scattering by matter of incident monochromatic light (the Raman effect) that has many applications in laboratory and industry, yet to be used in space applications. Raman spectrometers will be included in two Mars rovers scheduled to be launched in 2020. The Raman instrument for ExoMars 2020 consists of three main units:(1) a transmission spectrograph coupled to a CCD detector; (2) an electronics box, including the excitation laser that controls the instrument functions; and (3) an optical head with an autofocus mechanism illuminating and collecting the scattered light from the spot under investigation. The optical head is connected to the excitation laser and the spectrometer by optical fibers. The instrument also has two targets positioned inside the rover analytical laboratory for onboard Raman spectral calibration. The aim of this article was to present a detailed description of the RLS instrument, including its operation on Mars. To verify RLS operation before launch and to prepare science scenarios for the mission, a simulator of the sample analysis chain has been developed by the team. The results obtained are also discussed. Finally, the potential of the Raman instrument for use in field conditions is addressed. By using a ruggedized prototype, also developed by our team, a wide range of terrestrial analog sites across the world have been studied. These investigations allowed preparing a large collection of real, in situ spectra of samples from different geological processes and periods of Earth evolution. On this basis, we are working to develop models for interpreting analog processes on Mars during the mission.
ERp57 is a thiol oxidoreductase that catalyzes disulfide formation in heavy chains of class I histocompatibility molecules. It also forms a mixed disulfide with tapasin within the class I peptide loading complex, stabilizing the complex and promoting efficient binding of peptides to class I molecules. Since ERp57 associates with the lectin chaperones calnexin and calreticulin, it is thought that ERp57 requires these chaperones to gain access to its substrates. To test this idea, we examined class I biogenesis in cells lacking calnexin or calreticulin or that express an ERp57 mutant that fails to bind to these chaperones. Remarkably, heavy chain disulfides formed at the same rate in these cells as in wild type cells. Moreover, ERp57 formed a mixed disulfide with tapasin and promoted efficient peptide loading in the absence of interactions with calnexin and calreticulin. These findings suggest that ERp57 has the capacity to recognize its substrates directly in addition to being recruited through lectin chaperones. We also found that calreticulin could be recruited into the peptide loading complex in the absence of interactions with both ERp57 and substrate oligosaccharides, demonstrating the importance of its polypeptide binding site in substrate recognition. Finally, by inactivating the redox-active sites of ERp57, we demonstrate that its enzymatic activity is dispensable in stabilizing the peptide loading complex and in supporting efficient peptide loading. Thus, ERp57 appears to play a structural rather than catalytic role within the peptide loading complex. Major histocompatibility complex (MHC)2 class I molecules present antigenic peptides to cytotoxic T lymphocytes (CTL), which leads to the elimination of virus-infected cells. MHC class I molecules are heterotrimers consisting of a transmembrane heavy chain (H chain), a soluble subunit termed  2 -microglobulin ( 2 m), and a peptide ligand of 8 -10 residues. Assembly of class I molecules begins in the endoplasmic reticulum (ER), where the glycosylated H chain binds to the membrane-bound lectin chaperone calnexin (Cnx) and its associated thiol oxidoreductase, ERp57. At this early stage, the two highly conserved disulfide bonds within the H chain are formed, and the H chain assembles with  2 m. H chain- 2 m heterodimers then enter a peptide loading complex (PLC), where class I molecules acquire peptides for display to CTL. The PLC consists of calreticulin (Crt), the soluble paralog of Cnx, an associated ERp57 molecule, a peptide transporter termed TAP, and tapasin, which is the nucleus of the PLC, bridging the interaction between class I heterodimers and the TAP peptide transporter. Once peptides are translocated into the ER by TAP, a subset bind to receptive H chain- 2 m heterodimers with high affinity, triggering dissociation of class I molecules from the PLC and their subsequent export from the ER to the cell surface (1, 2).Although the functions of most of the participants in class I biogenesis are well understood, the details of how ERp57 functions in...
Aims. The Spectral Imaging of the Coronal Environment (SPICE) instrument is a high-resolution imaging spectrometer operating at extreme ultraviolet (EUV) wavelengths. In this paper, we present the concept, design, and pre-launch performance of this facility instrument on the ESA/NASA Solar Orbiter mission. Methods. The goal of this paper is to give prospective users a better understanding of the possible types of observations, the data acquisition, and the sources that contribute to the instrument's signal. Results. The paper discusses the science objectives, with a focus on the SPICE-specific aspects, before presenting the instrument's design, including optical, mechanical, thermal, and electronics aspects. This is followed by a characterisation and calibration of the instrument's performance. The paper concludes with descriptions of the operations concept and data processing. Conclusions. The performance measurements of the various instrument parameters meet the requirements derived from the mission's science objectives. The SPICE instrument is ready to perform measurements that will provide vital contributions to the scientific success of the Solar Orbiter mission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.