Generative modeling is a flavor of machine learning with applications ranging from computer vision to chemical design. It is expected to be one of the techniques most suited to take advantage of the additional resources provided by near-term quantum computers. Here we implement a data-driven quantum circuit training algorithm on the canonical Bars-and-Stripes data set using a quantum-classical hybrid machine. The training proceeds by running parameterized circuits on a trapped ion quantum computer, and feeding the results 1 arXiv:1812.08862v2 [quant-ph] 31 Oct 2019 to a classical optimizer. We apply two separate strategies, Particle Swarm and Bayesian optimization to this task. We show that the convergence of the quantum circuit to the target distribution depends critically on both the quantum hardware and classical optimization strategy. Our study represents the first successful training of a high-dimensional universal quantum circuit, and highlights the promise and challenges associated with hybrid learning schemes.
One Sentence SummaryWe train generative modeling circuits on a quantum-classical hybrid computer showing optimization strategy and resource trade-off.
Finite-temperature phases of many-body quantum systems are fundamental to phenomena ranging from condensed-matter physics to cosmology, yet they are generally difficult to simulate. Using an ion trap quantum computer and protocols motivated by the quantum approximate optimization algorithm (QAOA), we generate nontrivial thermal quantum states of the transverse-field Ising model (TFIM) by preparing thermofield double states at a variety of temperatures. We also prepare the critical state of the TFIM at zero temperature using quantum–classical hybrid optimization. The entanglement structure of thermofield double and critical states plays a key role in the study of black holes, and our work simulates such nontrivial structures on a quantum computer. Moreover, we find that the variational quantum circuits exhibit noise thresholds above which the lowest-depth QAOA circuits provide the best results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.