A longstanding goal of research in semiconductor spintronics is the ability to inject, modulate, and detect electron spin in a single device 1-4 . A simple prototype consists of a lateral semiconductor channel with two ferromagnetic contacts, one of which serves as a source of spin-polarized electrons and the other as a detector. Based on work in analogous metallic systems 5-8 , two important criteria have emerged for demonstrating electrical detection of spin transport. The first is the measurement of a non-equilibrium spin population using a "non-local" ferromagnetic detector through which no charge current flows 5,7 . The potential at the detection electrode should be sensitive to the relative magnetizations of the detector and the source electrodes, a property referred to as the spin-valve effect. A second and more rigorous test is the existence of a Hanle effect, which is the modulation and suppression of the spin valve signal due to precession and dephasing in a transverse magnetic field 5,8 . Here we report on the observation of both the spin valve and Hanle effects in lateral devices consisting of epitaxial Fe Schottky tunnel barrier contacts on an n-doped GaAs channel. The dependence on transverse magnetic field, temperature, and contact separation are in good agreement with a model incorporating spin drift and diffusion. Spin transport is detected for both directions of current flow through the source electrode. The sign of the electrical detection signal is found to vary with the injection current and is correlated with the spin polarization in the GaAs channel determined by optical measurements. These
Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e/h, with a recent observation of a peak height close to 2e/h. Here we report a quantized conductance plateau at 2e/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.
We describe the fabrication and measurement of microwave coplanar waveguide resonators with internal quality factors above 10 7 at high microwave powers and over 10 6 at low powers, with the best low power results approaching 2 × 10 6 , corresponding to ∼ 1 photon in the resonator. These quality factors are achieved by controllably producing very smooth and clean interfaces between the resonators' aluminum metallization and the underlying single crystal sapphire substrate. Additionally, we describe a method for analyzing the resonator microwave response, with which we can directly determine the internal quality factor and frequency of a resonator embedded in an imperfect measurement circuit.High quality factor microwave resonators provide critical elements for superconducting electromagnetic radiation detectors 1 , quantum memories 2,3 , and quantum computer architectures 4 . Good performance and stability can be achieved for such applications using aluminum resonators patterned on sapphire substrates. Aluminum is a favored material due to its robust oxide and reasonable transition temperature, and sapphire provides an excellent substrate due to its very low microwave loss tangent 5 δ ∼ 10 −8 and its chemical inertness. However, the quality factors measured in such resonators is lower than expected; recent simulations 6 and experiments 7 suggest that the unexplained loss arises mostly from imperfections at the metal-substrate interface. Using an experimental apparatus with minimal stray magnetic fields and infrared light at the sample 8 , here we show that careful substrate preparation and cleaning yields aluminumon-sapphire resonators with significantly higher internal quality factors Q i . We also introduce a new method for evaluating the resonator microwave response.The aluminum for the resonators was deposited on cplane sapphire substrates in one of three deposition systems: A high vacuum DC sputter system (base pressure P base = 6 × 10 −8 Torr), a high vacuum electron-beam evaporator (P base = 5 × 10 −8 Torr) or an ultra-high vacuum (UHV) molecular beam epitaxy (MBE) system (P base = 6 × 10 −10 Torr) with electron-beam deposition. The sapphire substrates were first sonicated in a bath of acetone then isopropanol followed by a deionized water rinse. For the sputter-deposited and e-beam evaporated samples, we further cleaned the substrates prior to Al de-
Semiconductor nanowires provide an ideal platform for various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought in contact with a superconductor 1,2 . To fully exploit the potential of non-Abelian anyons for topological quantum computing, they need to be exchanged in a wellcontrolled braiding operation 3-8 . Essential hardware for braiding is a network of singlecrystalline nanowires coupled to superconducting islands. Here, we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks having a predefined number of superconducting islands.Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire "hashtags" reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase coherent system with strong spin-orbit coupling. In addition, a 2 proximity-induced hard superconducting gap is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens new avenues for the realization of epitaxial 3-dimensional quantum device architectures.Majorana Zero Modes (MZMs) are predicted to emerge once a superconductor (SC) is coupled to a semiconductor nanowire (NW) with a strong spin-orbit interaction (SOI) in an external magnetic field 1,2 . InSb NWs are a prime choice for this application due to the large Landé g-factor (~50) and strong Rashba SOI 9 , crucial for realization of MZMs. In addition, InSb nanowires generally show high mobility and ballistic transport [10][11][12] . Indeed, signatures of Majorana zero modes (MZMs) have been detected in hybrid superconductor-semiconductor InSb and InAs NW systems 11,[13][14][15] . Multiple schemes for topological quantum computing based on braiding of MZMs have been reported, all employing hybrid NW networks 3-8 .Top-down fabrication of InSb NW networks is an attractive route towards scalability 16 , however, the large lattice mismatch between InSb and insulating growth substrates limits the crystal quality. An alternative approach is bottom-up synthesis of out-of-plane NW networks which, due to their large surface-to-volume ratio, effectively relieve strain on their sidewalls, enabling the growth of single-crystalline NWs on highly lattice-mismatched substrates [17][18][19] .Recently, different schemes have been reported for merging NWs into networks [20][21][22] .Unfortunately, these structures are either not single-crystalline, due to a mismatch of the crystal structure of the wires with that of the substrate (i.e. hexagonal NWs on a cubic substrate) 22 , or the yield is low due to the limited control over the multiple accessible growth directions (the yield decreases with the number of junctions in the network) 23 ....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.