Classical novae are expected to contribute to the 1809-keV Galactic γ-ray emission by producing its precursor 26Al, but the yield depends on the thermonuclear rate of the unmeasured 25Al(p,γ)26Si reaction. Using the β decay of 26P to populate the key J(π)=3(+) resonance in this reaction, we report the first evidence for the observation of its exit channel via a 1741.6±0.6(stat)±0.3(syst) keV primary γ ray, where the uncertainties are statistical and systematic, respectively. By combining the measured γ-ray energy and intensity with other experimental data on 26Si, we find the center-of-mass energy and strength of the resonance to be E(r)=414.9±0.6(stat)±0.3(syst)±0.6(lit.) keV and ωγ=23±6(stat)(-10)(+11)(lit.) meV, respectively, where the last uncertainties are from adopted literature data. We use hydrodynamic nova simulations to model 26Al production showing that these measurements effectively eliminate the dominant experimental nuclear-physics uncertainty and we estimate that novae may contribute up to 30% of the Galactic 26Al.
The internal-conversion and internal-pair-production decays of the first excited 0 + state in 68 Ni are studied following the β decay of 68 Co. A novel experimental technique, in which the ions of 68 Co were implanted into a planar germanium double-sided strip detector and which required digital pulse processing, is developed. The values for the energy of the first excited 0 + state and the electric monopole transition strength from the first excited 0 + state to the ground state in 68 Ni are determined to be 1605(3) keV and 7.6(4) × 10 −3 , respectively. Comparisons of the experimental results to Monte Carlo shell-model calculations suggest the coexistence between a spherical ground state and an oblate first excited 0 + state in 68 Ni.
Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on ^{69}Ni, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.