The dielectric response to infrared waves polarized along the tetragonal axis of a ferroelectric single-domain crystal of BaTiO3 was determined by time-domain THz spectroscopy and Fourier-transform infrared reflectivity techniques. In addition to the three well-known polar lattice modes, the experiment shows an additional mode of the relaxation type in the THz spectral region, which accounts for the Curie-Weiss behavior of the c-axis dielectric constant. A comparison of experimental results with ab initio based effective-Hamiltonian simulations allows us to elucidate its relation to the order-disorder model of Comes, Lambert, and Guinier [Solid State Commun. 6, 715 (1968)10.1016/0038-1098(68)90571-1].
Polarized Raman, IR and time-domain THz spectroscopy of orthorhombic lead zirconate single crystals yielded a comprehensive picture of temperature-dependent quasiharmonic frequencies of its low-frequency phonon modes. It is argued that these modes primarily involve vibration of Pb and/or oxygen octahedra librations and their relation to particular phonon modes of the parent cubic phase is proposed. Counts of the observed IR and Raman active modes belonging to distinct irreducible representations agree quite well with group-theory predictions. The most remarkable finding is the considerably enhanced frequency renormalization of the y-polarized polar modes, resulting in a pronounced low temperature dielectric anisotropy. Results are discussed in terms of contemporary phenomenological theory of antiferroelectricity.PACS numbers: 77.80.Bh, 77.84.Cg Although the ferroelectric and antiferroelectric materials have a lot in common, the latter have been much less investigated. An obvious reason is the absence of the direct linear coupling of the antiferroelectric (AF) order parameter to the macroscopic electric field.At the same time, a nonlinear coupling to the macroscopic electric field is still present. Therefore, AF materials actually do provide interesting functionalities, as well. In fact, the AF oxides are promising materials for high-energy storage capacitors, high-strain actuators and perhaps even for electrocaloric refrigerators [1][2][3]. The interest in the improvement of our understanding of AF oxides has been expressed recently [1,2,4,5].Lead zirconate, PbZrO 3 , is the best known example of an AF oxide -it is an end-member of technologically relevant solid solutions with PbTiO 3 (piezoelectric PZTs) [1,2,4,[6][7][8]. The parent paraelectric phase is a simple cubic perovskite with a 5-atom unit cell (P m3m, Z=1). Below the AF phase transition (T C ∼ 500 K), it goes over into an orthorhombic P bam (Z=8) structure [10,11]. The space-group symmetry change can be well understood[1] as a result of the condensation of two order parameters [1,4,9,12]. One of them is a polarization wave of a propagation vector Q Σ = (0.25, 0.25, 0) pc , the other order parameter is a Q R = (0.5, 0.5, 0.5) pc oxygen octahedra tilt mode (here pc stands for pseudocubic lattice, see Figs. 1-2).Superpositions of Q Σ , Q R include also Γ, X, M and Q S = (0.25, 0.25, 0.5) pc cubic-phase Brillouin zone points. All of these points become Brillouin zone centers in the P bam phase (see Fig. 2). Nevertheless, recent inelastic X-ray scattering experiments [4] have clearly demonstrated that the critical scattering occurs only in the vicinity of the Γ-point. Based on this experimental result, it was proposed that the AF phase transition is driven by a single mode, the Γ-point ferroelectric soft mode [4]. Within this model, the condensation of the Q Σ -point mode can be ascribed to the flexoelectric coupling with the ferroelectric mode, and the condensation of the Q R -point mode can be explained as due to a biquadratic coupling with the Q Σ m...
We report on a systematic study of optical properties of (Ga,Mn)As epilayers spanning the wide range of accessible substitutional MnGa dopings. The growth and post-growth annealing procedures were optimized for each nominal Mn doping in order to obtain films which are as close as possible to uniform uncompensated (Ga,Mn)As mixed crystals. We observe a broad maximum in the midinfrared absorption spectra whose position exhibits a prevailing blue-shift for increasing Mn-doping. In the visible range, a peak in the magnetic circular dichroism blue shifts with increasing Mndoping. These observed trends confirm that disorder-broadened valence band states provide a better one-particle representation for the electronic structure of high-doped (Ga,Mn)As with metallic conduction than an energy spectrum assuming the Fermi level pinned in a narrow impurity band.PACS numbers: 74.20. Mn, 74.25.Nf, 74.72.Bk, 74.76.Bz The discovery of ferromagnetism in (Ga,Mn)As above 100 K [1] opened an attractive prospect for exploring the physics of magnetic phenomena in doped semiconductors and for developing advanced concepts for spintronics. Assessment of a wide range of magnetic and transport properties of the material [2][3][4] showed that in ferromagnetic (Ga,Mn)As with Mn dopings x > 1%, disorderbroadened and shifted host Bloch bands represent a useful one-particle basis for describing this mixed-crystal degenerate semiconductor. The common kinetic-exchange model implementation of this valence band theory and the more microscopic tight-binding Anderson model or ab-initio density functional theory can all be shown [5] to be mutually consistent on the level of atomic and orbital resolved band structure. The main utility of valence band theories have been in providing a qualitative and often semi-quantitative description of phenomena originating from the exchange split and spin-orbit coupled electronic structure and in assisting the development of prototype spintronic devices [4]. Other basic physical properties of (Ga,Mn)As, namely those reflecting the vicinity of the metal-insulator transition and localization and electronelectron interaction effects, remain to be fully understood and require to go beyond the commonly employed perturbative or disorder averaged Bloch-band theories.In the insulator non-magnetic regime (x 1%), the system is readily described by localized Fermi level states residing inside a narrow impurity band separated from the valence band by an energy gap of magnitude close to the isolated Mn Ga impurity binding energy. Recently, a debate has been stirred by proposals, based in particular on optical spectroscopy measurements [6], that the narrow impurity band persists in high-doped (Ga,Mn)As with metallic conduction. Several phenomenological variants of the impurity band model have been proposed for the high-doped regime [6][7][8][9][10] which are mutually inconsistent from the perspective of the assumed atomic orbital nature of the impurity band states [5]. Further theoretical inconsistencies arise when recreating ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.