The lunar nearside has been investigated by many uncrewed and crewed missions, but the farside of the Moon remains poorly known. Lunar farside exploration is challenging because maneuvering rovers with efficient locomotion in harsh extraterrestrial environment is necessary to explore geological characteristics of scientific interest. Chang’E-4 mission successfully targeted the Moon’s farside and deployed a teleoperated rover (Yutu-2) to explore inside the Von Kármán crater, conveying rich information regarding regolith, craters, and rocks. Here, we report mobile exploration on the lunar farside with Yutu-2 over the initial 2 years. During its journey, Yutu-2 has experienced varying degrees of mild slip and skid, indicating that the terrain is relatively flat at large scales but scattered with local gentle slopes. Cloddy soil sticking on its wheels implies a greater cohesion of the lunar soil than encountered at other lunar landing sites. Further identification results indicate that the regolith resembles dry sand and sandy loam on Earth in bearing properties, demonstrating greater bearing strength than that identified during the Apollo missions. In sharp contrast to the sparsity of rocks along the traverse route, small fresh craters with unilateral moldable ejecta are abundant, and some of them contain high-reflectance materials at the bottom, suggestive of secondary impact events. These findings hint at notable differences in the surface geology between the lunar farside and nearside. Experience gained with Yutu-2 improves the understanding of the farside of the Moon, which, in return, may lead to locomotion with improved efficiency and larger range.
<p><strong>Abstract.</strong> The Chang’e-4 (CE-4) probe, which includes a lander and a rover, was successfully landed in Von Kármán crater inside the South Pole-Aitken basin on January 3, 2019. Landing site mapping and topographic analyses have been performed at different scales using orbital, descent and ground data to support mission operations and various scientific investigations. We produced a 0.9&thinsp;m-resolution seamless digital orthophoto map (DOM) mosaic of the CE-4 landing site region covering 51&thinsp;km&thinsp;&times;&thinsp;30&thinsp;km using 100 Lunar Reconnaissance Orbiter Camera (LROC) Narrow-Angle Camera (NAC) images. Within an area of 3.2&thinsp;km&thinsp;&times;&thinsp;3.0&thinsp;km of the the DOM around the lander, more than 11,000 craters with diameter greater than 5&thinsp;m have been identified and measured. A 0.03&thinsp;m- resolution DOM, which covers an area of 211&thinsp;m&thinsp;&times;&thinsp;187&thinsp;m, was generated using descent images, and has been used as one of the base maps for overall rover traverse planning. During surface operations, local DEMs with 0.02&thinsp;m resolution are routinely produced and topographic analysis have been performed at each waypoint using Navcam images and at some locations using Pancam images, to support waypoint-to-waypoint path planning, science target selection and scientific investigations.</p>
Chang'e-4 lander, carrying Yutu-2 rover, was successfully landed on the far side of lunar surface in Von Ká rmá n crater inside the South Pole-Aitken basin on January 3rd, 2019. The descent images, captured by the descent camera mounted on the lander, captured the sequential descent images and recorded the scene changes during the entry, descent and landing (EDL) process. This paper proposed a bundle adjustment based geometric processing method for descent and landing trajectory recovery using descent images. A frame camera based self-calibration model was introduced for high precision estimation of interior and exterior parameters of descent images simultaneously in a least squares manners. Evenly distributed GCPs were selected from the landing area in a digital orthophoto map generated from LROC NAC images and SLDEM2015. The experimental results demonstrated the effectiveness of the proposed method in Chang'e-4 descent trajectory recovery.
Abstract. On January 3, 2019, the Chang'e-4 (CE-4) probe successfully landed in the Von Kármán crater inside the South Pole-Aitken (SPA) basin. With the support of a relay communication satellite "Queqiao" launched in 2018 and located at the Earth-Moon L2 liberation point, the lander and the Yutu-2 rover carried out in-situ exploration and patrol surveys, respectively, and were able to make a series of important scientific discoveries. Owing to the complexity and unpredictability of the lunar surface, teleoperation has become the most important control method for the operation of the rover. Computer vision is an important technology to support the teleoperation of the rover. During the powered descent stage and lunar surface exploration, teleoperation based on computer vision can effectively overcome many technical challenges, such as fast positioning of the landing point, high-resolution seamless mapping of the landing site, localization of the rover in the complex environment on the lunar surface, terrain reconstruction, and path planning. All these processes helped achieve the first soft landing, roving, and in-situ exploration on the lunar farside. This paper presents a high-precision positioning technology and positioning results of the landing point based on multi-source data, including orbital images and CE-4 descent images. The method and its results have been successfully applied in an actual engineering mission for the first time in China, providing important support for the topographical analysis of the landing site and mission planning for subsequent teleoperations. After landing, a 0.03 m resolution DOM was generated using the descent images and was used as one of the base maps for the overall rover path planning. Before each movement, the Yutu-2 rover controlled its hazard avoidance cameras (Hazcam), navigation cameras (Navcam), and panoramic cameras (Pancam) to capture stereo images of the lunar surface at different angles. Local digital elevation models (DEMs) with a 0.02 m resolution were routinely produced at each waypoint using the Navcam and Hazcam images. These DEMs were then used to design an obstacle recognition method and establish a model for calculating the slope, aspect, roughness, and visibility. Finally, in combination with the Yutu-2 rover mobility characteristics, a comprehensive cost map for path search was generated.By the end of the first 12 lunar days, the Yutu-2 rover has been working on the lunar farside for more than 300 days, greatly exceeding the projected service life. The rover was able to overcome the complex terrain on the lunar farside, and travelled a total distance of more than 300 m, achieving the "double three hundred" breakthrough. In future manned lunar landing and exploration of Mars by China, computer vision will play an integral role to support science target selection and scientific investigations, and will become an extremely important core technology for various engineering tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.