Selective harmonic cancellation has become of primary importance in a wide range of power electronics applications, for example, uninterrupted power systems, regenerative converters, and active power filters (APFs). In such applications, the primary objectives are an accurate cancellation of selected harmonics and a quick speed of response under transients. This paper provides a novel signal-processing algorithm for selective harmonic identification based on heterodyning, moving average finite-impulse response filters, and phase-locked loop (PLL). The algorithm is applied over the current of a nonlinear load in the feedforward-based control of an APF. The PLL tracks the phase and frequency of the fundamental component. Then, the fundamental phase is multiplied by the order of the selected harmonic, and two random unitary orthogonal "axis waves" are generated. These unitary waves, rotating at the harmonic frequency, are multiplied by the input load current, thereby "moving" the Fourier series coefficients of the selected harmonic to dc (heterodyning). Moving average FIR filters are used to filter the harmonics generated in the heterodyning process from the dc signal; moving average FIR filters are very suitable for most of the power quality applications, thanks to their "comb-type" frequency response and their quick transient response. Experimental results confirm good performance for steady-state harmonic cancellation and an optimal system response to load transients. The theory of the algorithm has been developed for single-and three-phase systems.
This article describes a multi-point optical fiber-based sensor for the measurement of electrolyte density in lead-acid batteries. It is known that the battery charging process creates stratification, due to the different densities of sulphuric acid and water. In order to study this process, density measurements should be obtained at different depths. The sensor we describe in this paper, unlike traditional sensors, consists of several measurement points, allowing density measurements at different depths inside the battery. The obtained set of measurements helps in determining the charge (SoC) and state of health (SoH) of the battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.