NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the K+ → π+ ν ν̄ decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. The beam line and detector components are described together with their early performance obtained from 2014 and 2015 data.
The KLOE experiment at the upgraded DAFNE e(+) e(-) collider in Frascati (KLOE-2) is going to start a new data taking at the beginning of 2010 with its detector upgraded with a tagging system for the identification of gamma-gamma interactions. The tagging stations for low-energy e(+) e(-) will consist in two calorimeters placed between the beam-pipe outer support structure and the inner wall of the KLOE drift chamber. This calorimeter will be made of LYSO crystals readout by Silicon Photomultipliers, to achieve an energy resolution better than 8% at 200 MeV. (C) 2009 Elsevier B.V. All rights reserved
The branching ratio for the decay K + → π + νν is sensitive to new physics; the NA62 experiment will measure it to within about 10%. To reject the dominant background from channels with final state photons, the large-angle vetoes (LAVs) must detect particles with better than 1 ns time resolution and 10% energy resolution over a very large energy range. Our custom readout board uses a time-over-threshold discriminator coupled to a TDC as a straightforward solution to satisfy these requirements. A prototype of the readout system was extensively tested together with the ANTI-A2 large angle veto module at CERN in summer 2010.
The NA62 experiment [1] will measure the BR(K + → π + νν) to within about 10%. To reject the dominant background from final state photons, the large-angle vetoes (LAVs) must detect particles with better than 1 ns time resolution and 10% energy resolution over a very large energy range. A low threshold, large dynamic range, Time-over-threshold based solution has been developed for the LAV front end electronics. Our custom 32 channel 9U board uses a pair of low threshold discriminators for each channel to produce LVDS logic signals. The achieved time resolution obtained in laboratory, coupled to an HPTDC based readout board, is ∼150 ps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.