The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.
A narrow pentaquark state, P c ð4312Þ þ , decaying to J=ψp, is discovered with a statistical significance of 7.3σ in a data sample of Λ 0 b → J=ψpK − decays, which is an order of magnitude larger than that previously analyzed by the LHCb Collaboration. The P c ð4450Þ þ pentaquark structure formerly reported by LHCb is confirmed and observed to consist of two narrow overlapping peaks, P c ð4440Þ þ and P c ð4457Þ þ , where the statistical significance of this two-peak interpretation is 5.4σ. The proximity of the Σ þ cD 0 and Σ þ cD Ã0 thresholds to the observed narrow peaks suggests that they play an important role in the dynamics of these states.
Observations of exotic structures in the J=ψp channel, which we refer to as charmonium-pentaquark states, in Λ 0 b → J=ψK − p decays are presented. The data sample corresponds to an integrated luminosity of 3 fb −1 acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body final state reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the J=ψp mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380 AE 8 AE 29 MeV and a width of 205 AE 18 AE 86 MeV, while the second is narrower, with a mass of 4449.8 AE 1.7 AE 2.5 MeV and a width of 39 AE 5 AE 19 MeV. The preferred J P assignments are of opposite parity, with one state having spin 3=2 and the other 5=2.
A test of lepton universality, performed by measuring the ratio of the branching fractions of the B 0 → K * 0 µ + µ − and B 0 → K * 0 e + e − decays, R K * 0 , is presented. The K * 0 meson is reconstructed in the final state K + π − , which is required to have an invariant mass within 100 MeV/c 2 of the known K * (892) 0 mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of about 3 fb −1 , collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The ratio is measured in two regions of the dilepton invariant mass squared, q 2 , to be− 0.07 (stat) ± 0.03 (syst) for 0.045 < q 2 < 1.1 GeV 2 /c 4 , 0.69 + 0.11 − 0.07 (stat) ± 0.05 (syst) for 1.1 < q 2 < 6.0 GeV 2 /c 4 .The corresponding 95.4% confidence level intervals are [0.52, 0.89] and [0.53, 0.94]. The results, which represent the most precise measurements of R K * 0 to date, are compatible with the Standard Model expectations at the level of 2.1-2.3 and 2.4-2.5 standard deviations in the two q 2 regions, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.