Pellet injection from the inner wall is planned for use in ITER as the primary core fuelling system since gas fuelling is expected to be highly inefficient in burning plasmas. Tests of the inner wall guide tube have shown that 5 mm pellets with up to 300 m s−1 speeds can survive intact and provide the necessary core fuelling rate. Modelling and extrapolation of the inner wall pellet injection experiments from present day's smaller tokamaks leads to the prediction that this method will provide efficient core fuelling beyond the pedestal region. Using pellets for triggering of frequent small edge localized modes is an attractive additional benefit that the pellet injection system can provide. A description of the ITER pellet injection system's capabilities for fuelling and ELM triggering is presented and performance expectations and fusion power control aspects are discussed.
Deuterium pellets have been injected into plasmas in the DIII-D tokamak from the inner wall, top, and outer midplane port locations to investigate fuelling efficiency, mass deposition and interaction with edge localized modes (ELMs). Pellets injected from the outer midplane port (low field side (LFS)) show a large discrepancy in the mass deposition profile and fuelling efficiency from conventional pellet ablation theory, while the penetration depth compares favourably with theory. The mass deposition from pellets injected from inner wall and top locations is deeper than expected from ablation theory. The profile measurements indicate that pellet mass is deposited inside the measured penetration radius, thus verifying that a drift of the pellet ablatant is occurring in the major radius direction during the toroidal symmetrization process. The scaling of the measured drift magnitude in DIII-D is found to depend strongly on the pellet size and plasma pedestal temperature. Extrapolation to a burning plasma configuration on ITER is favourable for inner wall pellet fuel deposition depth well beyond the separatrix. Pellets injected into H-mode plasmas from all locations trigger ELMs with much larger ELM events induced by the outside midplane injected pellets. This suggests that the LFS is more sensitive to ELM triggering and may be the preferred location to inject very small pellets to trigger frequent small ELMs and thus minimize ELM induced damage to the divertor material surfaces.
Shattered pellet injection (SPI) is one of the prime candidates for the ITER disruption mitigation system because of its deeper penetration and larger particle flux than massive gas injection (MGI) (Taylor et al 1999 Phys. Plasmas 6 1872) using deuterium (Commaux et al 2010 Nucl. Fusion 50 112001, Combs et al 2010 IEEE Trans. Plasma Sci. 38 400, Baylor et al 2009 Nucl. Fusion 49 085013). The ITER disruption mitigation system will likely use mostly high Z species such as neon because of more effective thermal mitigation and pumping constraints on the maximum amount of deuterium or helium that could be injected. An upgrade of the SPI on DIII-D enables ITER relevant injection characteristics in terms of quantities and gas species. This upgraded SPI system was used on DIII-D for the first time in 2014 for a direct comparison with MGI using identical quantities of neon. This comparison enabled the measurements of density perturbations during the thermal quench (TQ) and radiated power and heat loads to the divertor. It showed that SPI using similar quantities of neon provided a faster and stronger density perturbation and neon assimilation, which resulted in a lower conducted energy to the divertor and a faster TQ onset. Radiated power data analysis shows that this was probably due to the much deeper penetration of the neon in the plasma inducing a higher core radiation than in the MGI case. This experiment shows also that the MHD activity during an SPI shutdown (especially during the TQ) is quite different compared to MGI. This favorable TQ energy dissipation was obtained while keeping the current quench (CQ) duration within acceptable limits when scaled to ITER.
New rapid shutdown strategies have been recently tested in the DIII-D tokamak to mitigate runaway electrons (REs). Disruptions in ITER are predicted to generate multi-MeV REs that could damage the machine. The RE population in large tokamaks is expected to be dominated by avalanche amplification which can be mitigated at high density levels by collisional drag. Particle injection schemes for collisional suppression of RE have been developed and tested in ITER-relevant scenarios: massive gas injection, shattered pellet injection (SPI) and shell pellet injection. The results show an improved penetration of particles injected with the SPI. Another strategy has been developed to harmlessly deconfine REs by applying a non-axisymmetric magnetic perturbation to worsen their confinement. This technique appeared to deconfine seed RE before the avalanche process could amplify the RE beam. The last method tested was to use the plasma position control system on the RE beam to prevent it from contacting the wall. This proved effective in preventing high current RE beam from touching the wall and providing more time to mitigate an existing RE beam but a successful ‘soft landing’ (without fast final losses) of the RE has not been observed yet.
Cryogenic pellet injection is a widely used technique for delivering fuel to the core of magnetically confined plasmas. Indeed, such systems are currently functioning on many tokamak, reversed field pinch and stellarator devices. A pipe-gun-type pellet injector is now operated on the TJ-II, a low-magnetic shear stellarator of the heliac type. Cryogenic hydrogen pellets, containing between 3 × 10 18 and 4 × 10 19 atoms, are injected at velocities between 800 and 1200 m s −1 from its low-field side into plasmas created and/or maintained in this device by electron cyclotron resonance and/or neutral beam injection heating. In this paper, the first systematic study of pellet ablation, particle deposition and fuelling efficiency is presented for TJ-II. From this, light-emission profiles from ablating pellets are found to be in reasonable agreement with simulated pellet ablation profiles (created using a neutral gas shielding-based code) for both heating scenarios. In addition, radial offsets between recorded light-emission profiles and particle deposition profiles provide evidence for rapid outward drifting of ablated material that leads to pellet particle loss from the plasma. Finally, fuelling efficiencies are documented for a range of target plasma densities (~4 × 10 18 -~2 × 10 19 m −3 ). These range from ~20%-~85% and are determined to be sensitive to pellet penetration depth. Additional observations, such as enhanced core ablation, are discussed and planned future work is outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.