Defects in dystroglycan post-translational modification result in congenital muscular dystrophy with or without additional eye and brain involvement, are referred to as secondary dystroglycanopathies and have been associated with mutations in 11 different genes encoding glycosyltransferases or associated proteins. However, only one patient with a mutation in the dystroglycan encoding gene DAG1 itself has been described before. We here report a homozygous novel DAG1 missense mutation c.2006G>T predicted to result in the amino acid substitution p.Cys669Phe in the β-subunit of dystroglycan in two Libyan siblings. The affected girls presented with a severe muscle-eye-brain disease-like phenotype with distinct additional findings of macrocephaly and extended bilateral multicystic white matter disease, overlapping with the cerebral findings in patients with megalencephalic leucoencephalopathy with subcortical cysts. This novel clinical phenotype observed in our patients further expands the clinical spectrum of dystroglycanopathies and suggests a role of DAG1 not only for dystroglycanopathies but also for some forms of more extensive and multicystic leucodystrophy.
Background and purpose The therapeutic landscape of spinal muscular atrophy (SMA) has changed dramatically during the past 4 years, but treatment responses differ remarkably between individuals, and therapeutic decision‐making remains challenging, underlining the persistent need for validated biomarkers. Methods We applied untargeted proteomic analyses to determine biomarkers in cerebrospinal fluid (CSF) samples of SMA patients under treatment with nusinersen. Identified candidate proteins were validated in CSF samples of SMA patients by Western blot and enzyme‐linked immunosorbent assay. Furthermore, levels of peripheral neurofilament heavy and light chain were determined. Results Untargeted proteomic analysis of CSF samples of three SMA type 1 patients revealed the lysosomal protease cathepsin D as a candidate biomarker. Subsequent validation analysis in a larger cohort of 31 pediatric SMA patients (type 1, n = 12; type 2, n = 9; type 3, n = 6; presymptomatically treated, n = 4; age = 0–16 years) revealed a significant decline of cathepsin D levels in SMA patients aged ≥2 months at the start of treatment. Although evident in all older age categories, this decline was only significant in the group of patients who showed a positive motor response. Moreover, downregulation of cathepsin D was evident in muscle biopsies of SMA patients. Conclusions We identified a decline of cathepsin D levels in CSF samples of SMA patients under nusinersen treatment that was more pronounced in the group of "treatment responders" than in "nonresponders." We believe that our results indicate a suitability of cathepsin D levels as a possible biomarker in SMA also in older patients, in combination with analysis of peripheral neurofilament light chain in adolescents or alone in adult patients.
The natural history of patients with spinal muscular atrophy (SMA) has changed due to advances in standard care and development of targeted treatments. Nusinersen was the first drug approved for the treatment of all SMA patients. The transfer of clinical trial data into a real-life environment is challenging, especially regarding the advice of patients and families to what extent they can expect a benefit from the novel treatment. We report the results of a modified Delphi consensus process among child neurologists from Germany, Austria and Switzerland about the indication or continuation of nusinersen treatment in children with SMA type 1 based on different clinical case scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.