Abstract:The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI [Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset.The characteristic most often associated with neutrinos is a very small probability of interaction with other forms of matter, allowing them to traverse astronomical objects while undergoing no energy loss. As a result, large targets (tons to tens of kilotons) are used for their detection. The discovery of a weak neutral current in neutrino interactions (1) implied that neutrinos were capable of coupling to quarks through the exchange of neutral Z bosons. Soon thereafter it was suggested that this mechanism should also lead to coherent interactions between neutrinos and all nucleons present in an atomic nucleus (2). This possibility would exist only as long as the momentum exchanged remained significantly smaller than the inverse of the nuclear size ( Fig. 1A), effectively restricting the process to neutrino energies below a few tens of MeV.The enhancement to the probability of interaction (scattering cross-section) would however be very large when compared to interactions with isolated nucleons, approximately scaling with the square of the number of neutrons in the nucleus (2, 3). For heavy nuclei and sufficiently intense neutrino sources, this can lead to a dramatic reduction in detector mass, down to a few kilograms.Coherent elastic neutrino-nucleus scattering (CEnNS) has evaded experimental demonstration for forty-three years following its first theoretical description. This is somewhat surprising, in view of the magnitude of its expected cross-section relative to other tried-andtested neutrino couplings (Fig. 1B), and of the availability of suitable neutrino sources: solar, atmospheric and terrestrial, supernova bursts, nuclear reactors, spallation facilities, and certain radioisotopes (3). This delay stems from the difficulty in detecting the low-energy (few keV) nuclear recoil produced as the single outcome of the interaction. Compared to a minimum ionizing particle of the same energy, a recoiling nucleus has a diminished ability to generate measurable scintillation or ionization in common radiation detector materials. This is exacerbated by a trade-off between the enhancement to the CEnNS cross-section brought about by a large nuclear mass, and the smaller maxi...
We study the possibility of using CsI [Na] scintillators as an advantageous target for the detection of coherent elastic neutrinonucleus scattering (CENNS), using the neutrino emissions from the SNS spallation source at Oak Ridge National Laboratory. The response of this material to low-energy nuclear recoils like those expected from this process is characterized. Backgrounds are studied using a 2 kg low-background prototype crystal in a dedicated radiation shield. The conclusion is that a planned 14 kg detector should measure approximately 550 CENNS events per year above a demonstrated ∼ 7 keVnr low-energy threshold, with a signalto-background ratio sufficient for a first measurement of the CENNS cross-section. The cross-section for the 208 Pb(ν e , e − ) 208 Bi reaction, of interest for future supernova neutrino detection, can be simultaneously obtained.
Future tonne-scale liquefied noble gas detectors depend on efficient light detection in the VUV range. In the past years Silicon Photomultipliers (SiPMs) have emerged as a valid alternative to standard photomultiplier tubes or large area avalanche photodiodes. The next generation double beta decay experiment, nEXO, with a 5 tonne liquid xenon time projection chamber, will use SiPMs for detecting the 175 nm xenon scintillation light, in order to achieve an energy resolution of σ/Qββ = 1 %. This paper presents recent measurements of the VUV-HD generation SiPMs from Fondazione Bruno Kessler in two complementary setups. It includes measurements of the photon detection efficiency with gaseous xenon scintillation light in a vacuum setup and dark measurements in a dry nitrogen gas setup. We report improved photon detection efficiency at 175 nm compared to previous generation devices, that would meet the criteria of nEXO. Furthermore, we present the projected nEXO detector light collection and energy resolution that could be achieved by using these SiPMs. Index Terms-silicon photomultiplier, xenon detectors, photo detectors, vacuum ultra-violet light, nEXO I. NEUTRINO-LESS DOUBLE BETA DECAY AND NEXO N eutrino-less double beta decay (0νββ) is a hypothetical nuclear decay where two neutrons decay into two protons and two electrons are emitted but no anti-neutrinos are present in the final state. The observation of this process would have a fundamental impact on the Standard Model of Particle Physics, specifically showing a violation of lepton number conservation (|∆L| = 2), and would imply that the neutrino is a Majorana fermion [1], independently of the actual process enabling the decay [2]. Furthermore, the half-life of the decay would shed light on the absolute neutrino mass scale [3]. The nEXO collaboration plans to build a cylindrical singlephase time projection chamber (TPC) filled with 5 tonnes of liquid xenon (LXe), with 90 % enrichment in 136 Xe [4]. nEXO takes advantage of the experience from its predecessor EXO-200 [5], but will incorporate new light and charge detectors [6]. Together with cold electronics sitting inside the LXe, this allows nEXO to achieve an energy resolution of σ/Q ββ = 1 % for the 0νββ decay of 136 Xe (2458.07 ± 0.31 keV [7], [8]).In particular, instead of the EXO-200 Large Area Avalanche Photo-diodes (LAAPDs), nEXO will use Silicon Photomultipliers (SiPMs) for the detection of xenon scintillation light. The SiPMs will fully cover the lateral surface of the cylinder with a total photo-sensitive area of about 4 m 2 , as shown in Figure 1. The devices will be immersed in LXe and placed in the high field region behind the field shaping rings of the TPC field cage [9]. The performance of SiPMs has improved significantly over the past decade and they are especially interesting because of their high gain, on the order of 10 6 , and their single photon resolution capability.The half-life sensitivity of nEXO to the 0νββ decay of 136 Xe is projected to be 9.5 × 10 27 yr for 90 % C.L. after 10 years o...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.