There are increased numbers of activated T lymphocytes in the bronchial mucosa of stable chronic obstructive pulmonary disease (COPD) patients. T helper type 17 (Th17) cells release interleukin (IL)-17 as their effector cytokine under the control of IL-22 and IL-23. Furthermore, Th17 numbers are increased in some chronic inflammatory conditions. To investigate the expression of interleukin (IL)-17A, IL-17F, IL-21, IL-22 and IL-23 and of retinoic orphan receptor RORC2, a marker of Th17 cells, in bronchial biopsies from patients with stable COPD of different severity compared with age-matched control subjects. The expression of IL-17A, IL-17F, IL-21, IL-22, IL-23 and RORC2 was measured in the bronchial mucosa using immunohistochemistry and/or quantitative polymerase chain reaction. The number of IL-22(+) and IL-23(+) immunoreactive cells is increased in the bronchial epithelium of stable COPD compared with control groups. In addition, the number of IL-17A(+) and IL-22(+) immunoreactive cells is increased in the bronchial submucosa of stable COPD compared with control non-smokers. In all smokers, with and without disease, and in patients with COPD alone, the number of IL-22(+) cells correlated significantly with the number of both CD4(+) and CD8(+) cells in the bronchial mucosa. RORC2 mRNA expression in the bronchial mucosa was not significantly different between smokers with normal lung function and COPD. Further, we report that endothelial cells express high levels of IL-17A and IL-22. Increased expression of the Th17-related cytokines IL-17A, IL-22 and IL-23 in COPD patients may reflect their involvement, and that of specific IL-17-producing cells, in driving the chronic inflammation seen in COPD.
BackgroundIn models of COPD, environmental stressors induce innate immune responses, inflammasome activation and inflammation. However, the interaction between these responses and their role in driving pulmonary inflammation in stable COPD is unknown.ObjectivesTo investigate the activation of innate immunity and inflammasome pathways in the bronchial mucosa and bronchoalveolar lavage (BAL) of patients with stable COPD of different severity and control healthy smokers and non-smokers.MethodsInnate immune mediators (interleukin (IL)-6, IL-7, IL-10, IL-27, IL-37, thymic stromal lymphopoietin (TSLP), interferon γ and their receptors, STAT1 and pSTAT1) and inflammasome components (NLRP3, NALP7, caspase 1, IL-1β and its receptors, IL-18, IL-33, ST2) were measured in the bronchial mucosa using immunohistochemistry. IL-6, soluble IL-6R, sgp130, IL-7, IL-27, HMGB1, IL-33, IL-37 and soluble ST2 were measured in BAL using ELISA.ResultsIn bronchial biopsies IL-27+ and pSTAT1+ cells are increased in patients with severe COPD compared with control healthy smokers. IL-7+ cells are increased in patients with COPD and control smokers compared with control non-smokers. In severe stable COPD IL-7R+, IL-27R+ and TSLPR+ cells are increased in comparison with both control groups. The NALP3 inflammasome is not activated in patients with stable COPD compared with control subjects. The inflammasome inhibitory molecules NALP7 and IL-37 are increased in patients with COPD compared with control smokers. IL-6 levels are increased in BAL from patients with stable COPD compared with control smokers with normal lung function whereas IL-1β and IL-18 were similar across all groups.ConclusionsIncreased expression of IL-27, IL-37 and NALP7 in the bronchial mucosa may be involved in progression of stable COPD.
BackgroundIt is increasingly clear that some heat shock proteins (Hsps) play a role in inflammation. Here, we report results showing participation of Hsp60 in the pathogenesis of chronic obstructive pulmonary diseases (COPD), as indicated by data from both in vivo and in vitro analyses.Methods and ResultsBronchial biopsies from patients with stable COPD, smoker controls with normal lung function, and non-smoker controls were studied. We quantified by immunohistochemistry levels of Hsp10, Hsp27, Hsp40, Hsp60, Hsp70, Hsp90, and HSF-1, along with levels of inflammatory markers. Hsp10, Hsp40, and Hsp60 were increased during progression of disease. We found also a positive correlation between the number of neutrophils and Hsp60 levels. Double-immunostaining showed that Hsp60-positive neutrophils were significantly increased in COPD patients. We then investigated in vitro the effect on Hsp60 expression in bronchial epithelial cells (16HBE) caused by oxidative stress, a hallmark of COPD mucosa, which we induced with H2O2. This stressor determined increased levels of Hsp60 through a gene up-regulation mechanism involving NFkB-p65. Release of Hsp60 in the extracellular medium by the bronchial epithelial cells was also increased after H2O2 treatment in the absence of cell death.ConclusionsThis is the first report clearly pointing to participation of Hsps, particularly Hsp60, in COPD pathogenesis. Hsp60 induction by NFkB-p65 and its release by epithelial cells after oxidative stress can have a role in maintaining inflammation, e.g., by stimulating neutrophils activity. The data open new scenarios that might help in designing efficacious anti-inflammatory therapies centered on Hsp60 and applicable to COPD.
These data demonstrate that angiopoietin-2 and selected serum markers of angiogenesis progressively increase with haemodynamic and functional decline in CHF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.