An unprecedented air-stable, nanospheric polyhydrido copper cluster, [Cu20H11(S2P(O(i)Pr)2)9] (1H), which is the first example of an elongated triangular orthobicupola array of Cu atoms having C3h symmetry, was synthesized and characterized. Its composition was primarily determined by electrospray ionization mass spectrometry, and it was fully characterized by (1)H, (2)H, and (31)P NMR spectroscopy and single-crystal X-ray diffraction (XRD). The structure of complex 1H can be expressed in terms of a trigonal-bipyramidal [Cu2H5](3-) unit anchored within an elongated triangular orthobicupola containing 18 Cu atoms, which is further stabilized by 18 S atoms from nine dithiophosphate ligands and six capping hydrides. The positions of the 11 hydrides revealed by low temperature XRD were supported by a density functional theory investigation on the simplified model [Cu20H11(S2PH2)9] with C3h symmetry. 1H is capable of releasing H2 gas upon irradiation with sunlight, under mild thermal conditions (65 °C), or in the presence of acids at room temperature.
The first atomically and structurally precise silver-nanoclusters stabilized by Se-donor ligands, [Ag {Se P(O Pr) } ] (3) and [Ag {Se P(OEt) } ] (4), were isolated by ligand replacement reaction of [Ag {S P(O Pr) } ] (1) and [Ag {S P(O Pr) } ] (2), respectively. Furthermore, doping reactions of 4 with Au(PPh )Cl resulted in the formation of [AuAg {Se P(OEt) } ] (5). Structures of 3, 4, and 5 were determined by single-crystal X-ray diffraction. The anatomy of cluster 3 with an Ag core having C symmetry is very similar to that of its dithiophosphate analogue 1. Clusters 4 and 5 exhibit an Ag and Au@Ag core of O symmetry composed of eight silver capping atoms in a cubic arrangement and encapsulating an Ag and Au@Ag centered icosahedron, respectively. Both ligand exchange and heteroatom doping result in significant changes in optical and emissive properties for chalcogen-passivated silver nanoparticles, which have been theoretically confirmed as 8-electron superatoms.
An air- and moisture-stable nanoscale polyhydrido copper cluster [Cu32 (H)20 {S2 P(OiPr)2 }12 ] (1H ) was synthesized and structurally characterized. The molecular structure of 1H exhibits a hexacapped pseudo-rhombohedral core of 14 Cu atoms sandwiched between two nestlike triangular cupola fragments of (2×9) Cu atoms in an elongated triangular gyrobicupola polyhedron. The discrete Cu32 cluster is stabilized by 12 dithiophosphate ligands and a record number of 20 hydride ligands, which were found by high-resolution neutron diffraction to exhibit tri-, tetra-, and pentacoordinated hydrides in capping and interstitial modes. This result was further supported by a density functional theory investigation on the simplified model [Cu32 (H)20 (S2 PH2 )12 ].
The syntheses of the first rhombicuboctahedral copper polyhydride complexes [Cu28 (H)15 (S2 CNR)12 ]PF6 (NR=N(n) Pr2 or aza-15-crown-5) are reported. These complexes were analyzed by single-crystal X-ray and one by neutron diffraction. The core of each copper hydride nanoparticle comprises one central interstitial hydride and eight outer-triangular-face-capping hydrides. A further six face-truncating hydrides form an unprecedented bridge between the inner and outer copper atom arrays. The irregular inner Cu4 tetrahedron is encapsulated within the Cu24 rhombicuboctahedral cage, which is further enclosed by an array of twelve dithiocarbamate ligands that subtends the truncated octahedron of 24 sulfur atoms, which is concentric with the Cu24 rhombicuboctahedron and Cu4 tetrahedron about the innermost hydride. For these compounds, an intriguing, albeit limited, H2 evolution was observed at room temperature, which is accompanied by formation of the known ion [Cu8 (H)(S2 CNR)6 ](+) upon exposure of solutions to sunlight, under mild thermolytic conditions, and on reaction with weak (or strong) acids.
Reactions of Cu(I) salts with Na(S(2)CR) (R = N(n)Pr(2), NEt(2), aza-15-crown-5), and (Bu(4)N)(BH(4)) in an 8:6:1 ratio in CH(3)CN solution at room temperature yield the monocationic hydride-centered octanuclear Cu(I) clusters, [Cu(8)(H){S(2)CR}(6)](PF(6)) (R = N(n)Pr(2), 1(H); NEt(2), 2(H); aza-15-crown-5, 3(H)). Further reactions of [Cu(8)(H){S(2)CR}(6)](PF(6)) with 1 equiv of (Bu(4)N)(BH(4)) produced neutral heptanuclear copper clusters, [Cu(7)(H){S(2)CR}(6)] (R = N(n)Pr(2), 4(H); NEt(2), 5(H); aza-15-crown-5, 6(H)) and clusters 4-6 can also be generated from the reaction of Cu(BF(4))(2), Na(S(2)CR), and (Bu(4)N)(BH(4)) in a 7:6:8 molar ratio in CH(3)CN. Reformation of cationic Cu(I)(8) clusters by adding 1 equiv of Cu(I) salt to the neutral Cu(7) clusters in solution is observed. Intriguingly, the central hydride in [Cu(8)(H){S(2)CN(n)Pr(2)}(6)](PF(6)) can be oxidatively removed as H(2) by Ce(NO(3))(6)(2-) to yield [Cu(II)(S(2)CN(n)Pr(2))(2)] exploiting the redox-tolerant nature of dithiocarbamates. Regeneration of hydride-centered octanuclear copper clusters from the [Cu(II)(S(2)CN(n)Pr(2))(2)] can be achieved by reaction with Cu(I) ions and borohydride. The hydride release and regeneration of Cu(I)(8) was monitored by UV-visible titration experiments. To our knowledge, this is the first time that hydride encapsulated within a copper cluster can be released as H(2) via chemical means. All complexes have been fully characterized by (1)H NMR, FT-IR, UV-vis, and elemental analysis, and molecular structures of 1(H), 2(H), and 6(H) were clearly established by single-crystal X-ray diffraction. Both 1(H) and 2(H) exhibit a tetracapped tetrahedral Cu(8) skeleton, which is inscribed within a S(12) icosahedron constituted by six dialkyl dithiocarbamate ligands in a tetrametallic-tetraconnective (μ(2), μ(2)) bonding mode. The copper framework of 6(H) is a tricapped distorted tetrahedron in which the four-coordinate hydride is demonstrated to occupy the central site by single crystal neutron diffraction. Compounds 1-3 exhibit a yellow emission in both the solid state and in solution under UV irradiation at 77 K, and the structureless emission is assigned as a (3)metal to ligand charge transfer (MLCT) excited state. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations on model compounds match the experimental structures and provide rationalization of their bonding and optical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.