Estrogen receptor positive (ER+) breast cancer accounts for 70% of all breast cancers and is primarily treated with endocrine therapy. Approximately 40% of patients on endocrine therapy will become resistant via a number of mechanisms. There is evidence that in many cases ER continues to play a central role, including mutations in ER leading to a constitutively active receptor. Estrogen receptor degraders like fulvestrant are effective in shutting down ER signaling; however, poor pharmaceutical properties limit fulvestrant clinical activity and prevent it from achieving maximum receptor blockade. We describe the discovery of SAR439859, a novel, orally bioavailable SERD that is a potent antagonist and degrader of ER both in vitro and in vivo. SAR439859 has robust activity in multiple ER+ breast cancer cell lines including cells that are resistant to tamoxifen as well as cell lines harboring ER mutants. Across a large panel of ER+ cells, SAR439859 demonstrated broad and superior ER degradation activity than most SERDs undergoing clinical testing. This leads to a profound inhibition of ER signaling, better inhibition of cell growth and results in improved in vivo efficacy. SAR439859 demonstrated tumor regression in all ER+ BC models including MCF7-ESR1 mutant-Y537S model, as well as patient-derived xenograft model that is resistant to endocrine therapies. Furthermore, SAR439859 displays limited cross-resistance with other class of SERDs. Taken together, these results suggest that SAR439859 would be of therapeutic benefit in metastatic BC setting for patients harboring wild type or mutant ER. SAR439859 is being advanced toward the clinic. Citation Format: Shomali M, Cheng J, Koundinya M, Weinstein M, Malkova N, Sun F, Hebert A, Cindachao M, Hoffman D, McManus J, Levit M, Pollard J, Vincent S, Besret L, Adrian F, Winter C, El-Ahmad Y, Halley F, Hsu K, Lager J, Garcia-Echeverria C, Bouaboula M. Identification of SAR439859, an orally bioavailable selective estrogen receptor degrader (SERD) that has strong antitumor activity in wild-type and mutant ER+ breast cancer models [abstract]. In: Proceedings of the 2016 San Antonio Breast Cancer Symposium; 2016 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2017;77(4 Suppl):Abstract nr P3-04-05.
Despite resistance to endocrine therapies, estrogen receptor-positive (ER+) breast cancers (BC) still rely on ER. Eliminating ER by inducing its degradation with selective ER downregulators (SERD) should induce complete ablation of ER pathways. The clinical SERD fulvestrant, although it has demonstrated clinical benefits, is hampered by its poor drug properties and undesirable pharmacokinetics, undermining its optimal clinical activity. Therefore there is an unmet need for an improved therapy targeting ER. Here we describe SAR439859, a novel, nonsteroidal, orally bioavailable SERD currently in clinical trials. SAR439859 has a potent ER antagonist and ER degrading activity that translates in a robust inhibition of ER signaling in multiple ER+ breast cancer cell lines, including tamoxifen-resistant lines as well as cell lines harboring ER mutations. SAR439859 displays a broad and superior ER degradation activity across a large panel of ER+ cells. Importantly, based on its mechanism of action SAR439859 shows limited cross-resistance with other clinical SERD molecules. SAR439859 induces strong in vivo antitumor activity against a variety of BC cell lines and patient-derived xenografts, including models that harbor ERα mutations. The transcriptional profile analysis highlighted a crosstalk of ER mutant signaling and other oncogenic pathways. Interestingly, CDK4/6 inhibition by palbociclib induces partial activation of ER pathways as potential mechanism of tumor escape, which is completely abolished by the combination of SAR439859 with palbociclib. Finally, we demonstrate that SAR439859 in combination with palbociclib can lead to higher in vivo efficacy. This study highlights novel mechanism of ER degradation by SAR439859 that leads to profound inhibition of ER signaling as well as modulation of other oncogenic pathways and provides rationale for the ongoing clinical investigation of SAR439859 in ER+ breast cancer patients, both as a single agent and in combination with approved agents, such as CDK4 inhibitor. Citation Format: Monsif Bouaboula, Maysoun Shomali, Jane Cheng, Natalia Malkova, Fangxian Sun, Malvika Koundinya, Zhuyan Guo, Stephane Poirier, Mikhail Levit, Dietmar Hoffman, Hui Cao, Laurent Bestret, Francisco Adrian, Christoph Winter, Youssef El-Ahmad, Sylvie Vincent, Frank Halley, Gary McCort, Laurent Schio, Vicky Richon, Hong Cheng, Karl Hsu, Chris Soria, Patrick Cohen, Joanne Lager, Carlos Garcia-Echeverria, Laurent Debussche. SAR439859, an orally bioavailable selective estrogen receptor degrader (SERD) that demonstrates robust antitumor efficacy and limited cross-resistance in ER+ breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 943.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.