BackgroundThere is an emerging understanding that coronavirus disease 2019 (COVID-19) is associated with increased incidence of pneumomediastinum. We aimed to determine its incidence among patients hospitalised with COVID-19 in the United Kingdom and describe factors associated with outcome.MethodsA structured survey of pneumomediastinum and its incidence was conducted from September 2020 to February 2021. United Kingdom-wide participation was solicited via respiratory research networks. Identified patients had SARS-CoV-2 infection and radiologically proven pneumomediastinum. The primary outcomes were to determine incidence of pneumomediastinum in COVID-19 and to investigate risk factors associated with patient mortality.Results377 cases of pneumomediastinum in COVID-19 were identified from 58 484 inpatients with COVID-19 at 53 hospitals during the study period, giving an incidence of 0.64%. Overall 120-day mortality in COVID-19 pneumomediastinum was 195/377 (51.7%). Pneumomediastinum in COVID-19 was associated with high rates of mechanical ventilation. 172/377 patients (45.6%) were mechanically ventilated at the point of diagnosis. Mechanical ventilation was the most important predictor of mortality in COVID-19 pneumomediastinum at the time of diagnosis and thereafter (p<0.001) along with increasing age (p<0.01) and diabetes mellitus (p=0.08). Switching patients from continuous positive airways pressure support to oxygen or high flow nasal oxygen after the diagnosis of pneumomediastinum was not associated with difference in mortality.ConclusionsPneumomediastinum appears to be a marker of severe COVID-19 pneumonitis. The majority of patients in whom pneumomediastinum was identified had not been mechanically ventilated at the point of diagnosis.
This review covers
emerging biosensors for SARS-CoV-2 detection
together with a review of the biochemical and clinical assays that
are in use in hospitals and clinical laboratories. We discuss the
gap in bridging the current practice of testing laboratories with
nucleic acid amplification methods, and the robustness of assays the
laboratories seek, and what emerging SARS-CoV-2 sensors have currently
addressed in the literature. Together with the established nucleic
acid and biochemical tests, we review emerging technology and antibody
tests to determine the effectiveness of vaccines on individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.