We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.
Highlights d Flow cytometry, RNA-seq, and protein and image analyses reveal brain TME complexity d Glioma IDH mutation status and brain metastasis primary tumors shape the brain TME d Microglia and monocyte-derived macrophages exhibit multifaceted activation d TME immune cells show disease-and cell-type-specific expression patterns
Mutation in the IDH1 or IDH2 genes occurs frequently in gliomas and other human malignancies. In intermediate grade gliomas, IDH1 mutation is found in over 70% of tumors. These mutations impart the mutant IDH enzyme with a neomorphic activity – the ability to synthesize 2-hydroxyglutarate (2-HG). This ability leads to a reprogramming of chromatin state, a block in differentiation, and the establishment of the glioma hypermethylator phenotype (G-CIMP). It has been hypothesized but not proven that the extensive DNA methylation that occurs in G-CIMP tumors helps maintain and “lock in” glioma cancer cells in a dedifferentiated state. Here, we tested this hypothesis by treating patient derived IDH1 mutant glioma initiating cells (GIC) with non-cytotoxic, epigenetically targeted doses of the DNMT inhibitor decitabine. Global methylome analysis of treated IDH1 mutant GICs showed that DAC treatment resulted in reversal of DNA methylation marks induced by IDH and the re-expression of genes associated with differentiation. Accordingly, treatment of IDH1 mutant glioma cells resulted in a dramatic loss of stem-like properties and efficient adoption of markers of differentiation, effects not seen in decitabine treated IDH wild-type GICs. Induction of differentiation was much more efficient than that seen following treatment with a specific inhibitor of mutant IDH enzyme (Agios). Decitabine also decreased replicative potential and tumor growth in vivo. Reexpression of polycomb regulated genes accompanied these DAC-induced phenotypes. In total, our data indicates that targeting the pathologic DNA methylation in IDH mutant cells can reverse mutant IDH induced hypermethylation and block in differentiation and promote tumor control. These findings have substantial impact for exploring new treatment strategies for patients with IDH mutant gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.