In this paper, the design and development of a bio-inspired UHF sensor for partial discharge detection in power transformers is presented. The UHF sensor was developed for external use in dielectric windows of power transformers. For this purpose, a microstrip antenna was designed with a radiating element shape based on the leaf of the Jatropha mollissima (Pohl) Baill plant. Then, an epoxy coating and an aluminium enclosure were developed to protect the antenna against corrosion and to provide mechanical support, external noise immunity, and a lifetime compatibility with power transformers. In order to verify the electrical parameters of the developed sensor, measurements of the gain and the reflection coefficient were performed in an anechoic chamber. Lastly, the antenna sensitivity for denominated partial discharge (PD) detection was compared with the IEC 60270 standard method. For this purpose, simultaneous tests were carried out in a partial discharge generator setup, composed of an oil cell with needle-plane electrodes. The experimental tests demonstrated the effectiveness of the sensor for detecting PD signals with apparent charge values higher than 35 pC.
A new, bio-inspired printed monopole antenna (PMA) model is applied to monitor partial discharge (PD) activity in high voltage insulating systems. An optimized sensor was obtained by designing a PMA in accordance with the characteristics of the electromagnetic signal produced by PD. An ultra-wideband (UWB) antenna was obtained by applying the truncated ground plane technique. The patch geometry was bio-inspired by that of the Inga Marginata leaf, resulting in a significant reduction in size. To verify the operating frequency and gain of the PMA, measurements were carried out in an anechoic chamber. The results show that the antenna operating bandwidth covers most of the frequency range of PD occurrence. Moreover, the antenna presented a good sensitivity (mean gain of 3.63 dBi). The antenna performance was evaluated through comparative results with the standard IEC 60270 method. For this purpose, simultaneous tests were carried out in a PD generator arrangement, composed by an oil cell with point-to-plane electrode configurations. The developed PMA can be classified as an optimized sensor for PD detection and suitable for substation application, since it is able to measure PD radiated signals with half the voltage levels obtained from the IEC method and is immune to corona discharges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.