Background Differentiating bacterial from viral pneumonia is important for guiding targeted management and judicious use of antibiotics. We assessed if clinical characteristics and blood inflammatory biomarkers could be used to distinguish bacterial from viral pneumonia. Methods Western Australian children (≤17 years) hospitalized with radiologically-confirmed community-acquired pneumonia were recruited and clinical symptoms and management data were collected. C-reactive protein (CRP), white cell counts (WCC) and absolute neutrophil counts (ANC) were measured as part of routine care. Clinical characteristics and biomarker levels were compared between cases with definite bacterial pneumonia (clinical empyema and/or bacteria detected in blood or pleural fluid), presumed viral pneumonia (presence of ≥1 virus in nasopharyngeal swab without criteria for definite bacterial pneumonia), and other pneumonia cases (pneumonia in the absence of criteria for either definite bacterial or presumed viral pneumonia). The area-under-curve (AUC) of the receiver operating characteristic (ROC) curve for varying biomarker levels were used to characterise their utility for discriminating definite bacterial from presumed viral pneumonia. For biomarkers with AUC > 0.8 (fair discriminator), Youden index was measured to determine the optimal cut-off threshold, and sensitivity, specificity, predictive values (positive and negative) were calculated. We investigated whether better discrimination could be achieved by combining biomarker values with the presence/absence of symptoms. Results From May 2015 to October 2017, 230 pneumonia cases were enrolled: 30 with definite bacterial pneumonia, 118 with presumed viral pneumonia and 82 other pneumonia cases. Differences in clinical signs and symptoms across the groups were noted; more definite bacterial pneumonia cases required intravenous fluid and oxygen supplementation than presumed viral or other pneumonia cases. CRP, WCC and ANC were substantially higher in definite bacterial cases. For a CRP threshold of 72 mg/L, the AUC of ROC was 0.82 for discriminating definite bacterial pneumonia from presumed viral pneumonia. Combining the CRP with either the presence of fever (≥38 ο C) or the absence of rhinorrhea improved the discrimination. Conclusions Combining elevated CRP with the presence or absence of clinical signs/ symptoms differentiates definite bacterial from presumed viral pneumonia better than CRP alone. Further studies are required to explore combination of biomarkers and symptoms for use as definitive diagnostic tool. Electronic supplementary material The online version of this article (10.1186/s12890-019-0835-5) contains supplementary material, which is available to authorized users.
IntroductionRespiratory pathogens associated with childhood pneumonia are often detected in the upper respiratory tract of healthy children, making their contribution to pneumonia difficult to determine. We aimed to determine the contribution of common pathogens to pneumonia adjusting for rates of asymptomatic detection to inform future diagnosis, treatment and preventive strategies.MethodsA case–control study was conducted among children <18 years in Perth, Western Australia. Cases were children hospitalised with radiologically confirmed pneumonia; controls were healthy children identified from outpatient and local immunisation clinics. Nasopharyngeal swabs were collected and tested for 14 respiratory viruses and 6 bacterial species by Polymerase chain reaction (PCR). For each pathogen, adjusted odds ratio (aOR; 95% CI) was calculated using multivariate logistic regression and population-attributable fraction (95% CI) for pneumonia was estimated.ResultsFrom May 2015 to October 2017, 230 cases and 230 controls were enrolled. At least one respiratory virus was identified in 57% of cases and 29% of controls (aOR: 4.7; 95% CI: 2.8 to 7.8). At least one bacterial species was detected in 72% of cases and 80% of controls (aOR: 0.7; 95% CI: 0.4 to 1.2). Respiratory syncytial virus (RSV) detection was most strongly associated with pneumonia (aOR: 58.4; 95% CI: 15.6 to 217.5). Mycoplasma pneumoniae was the only bacteria associated with pneumonia (aOR: 14.5; 95% CI: 2.2 to 94.8). We estimated that RSV, human metapneumovirus (HMPV), influenza, adenovirus and Mycoplasma pneumoniae were responsible for 20.2% (95% CI: 14.6 to 25.5), 9.8% (5.6% to 13.7%), 6.2% (2.5% to 9.7%), 4% (1.1% to 7.1%) and 7.2% (3.5% to 10.8%) of hospitalisations for childhood pneumonia, respectively.ConclusionsRespiratory viruses, particularly RSV and HMPV, are major contributors to pneumonia in Australian children.
Infant vaccination with 3 doses of PCV10 or PCV13 is safe and immunogenic in a highly endemic setting; however, to significantly reduce pneumococcal disease in these settings, PCVs with broader serotype coverage and potency to reduce pneumococcal carriage are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.