In the skin, the lack of markers permitting the unambiguous identification of macrophages and of conventional and monocyte-derived dendritic cells (DCs) complicates understanding of their contribution to skin integrity and to immune responses. By combining CD64 and CCR2 staining, we successfully identified each of these cell types and studied their origin, transcriptomic signatures, and migratory and T cell stimulatory properties. We also analyzed the impact of microbiota on their development and their contribution to skin inflammation during contact hypersensitivity. Dermal macrophages had a unique scavenging role and were unable to migrate and activate T cells. Conventional dermal DCs excelled both at migrating and activating T cells. In the steady-state dermis, monocyte-derived DCs are continuously generated by extravasated Ly-6C(hi) monocytes. Their T cell stimulatory capacity combined with their poor migratory ability made them particularly suited to activate skin-tropic T cells. Therefore, a high degree of functional specialization occurs among the mononuclear phagocytes of the skin.
Using a mouse model allowing inducible ablation of tissue-resident macrophages, Baranska et al. determine that skin macrophages are the only cells capable of capturing and retaining tattoo pigment particles and show that long-term tattoo persistence relies on macrophage renewal rather than on macrophage longevity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.