Aim: Thalassaemia is a good candidate disease for control by preventive genetic programmes in developing countries. Accurate population frequency data are needed for planning the control of thalassaemia in the high risk Guangdong Province of southern China. Methods: In total, 13 397 consecutive samples from five geographical areas of Guangdong Province were analysed for both haematological and molecular parameters.Results: There was a high prevalence of carriers of a thalassaemia (8.53%), b thalassaemia (2.54%), and both a and b thalassaemia (0.26%). Overall, 11.07% of the population in this area were heterozygous carriers of a and b thalassaemia. The mutation spectrum of a and b thalassaemia and its constitution were fully described in this area. This study reports the true prevalence of silent a thalassaemia in the southern China population for the first time. In addition, two novel mutations that give rise to a thalassaemia, one deletion resulting in b thalassaemia, and a rare deletion (22 THAI allele) previously unreported in mainland China were detected. The frequency of the most common mutation, the Southeast Asian type of deletion (22 SEA , accounting for 48.54% of all a thalassaemias) was similar to the total of two a + thalassaemia deletions (2a 3.7 and 2a 4.2 , accounting for 47.49% of a thalassaemia). Conclusion: Both a and b thalassaemia are widely distributed in Guangdong Province of China. The knowledge gained in this study will enable the projected number of pregnancies at risk to be estimated and a screening strategy for control of thalassaemia to be designed in this area.
WES is a promising method for the identification of genetic variants that cause structural abnormalities in fetuses with normal results on karyotyping and CMA. This enhanced diagnostic yield has the potential to improve the clinical management of pregnancies and to inform better the reproductive decisions of affected families. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
The analysis of circulating nucleic acids has revealed applications in the noninvasive diagnosis, monitoring, and prognostication of many clinical conditions. Circulating fetal-specific sequences have been detected and constitute a fraction of the total DNA in maternal plasma. The diagnostic reliability of circulating DNA analysis depends on the fractional concentration of the targeted sequence, the analytical sensitivity, and the specificity. The robust discrimination of single-nucleotide differences between circulating DNA species is technically challenging and demands the adoption of highly sensitive and specific analytical systems. We have developed a method based on single-allele base extension reaction and MS, which allows for the reliable detection of fetal-specific alleles, including point mutations and single-nucleotide polymorphisms, in maternal plasma. The approach was applied to exclude the fetal inheritance of the four most common Southeast Asian -thalassemia mutations in at-risk pregnancies between weeks 7 and 21 of gestation. Fetal genotypes were correctly predicted in all cases studied. Fetal haplotype analysis based on a single-nucleotide polymorphism linked to the -globin locus, HBB, in maternal plasma also was achieved. Consequently, noninvasive prenatal diagnosis in a mother and father carrying identical -thalassemia mutations was accomplished. These advances will help in catalyzing the clinical applications of fetal nucleic acids in maternal plasma. This analytical approach also will have implications for many other applications of circulating nucleic acids in areas such as oncology and transplantation. R ecently, much interest has been focused on the biology and diagnostic applications of nucleic acids that are present in the plasma and serum of humans (1, 2). In particular, fetal DNA has been found to exist in maternal plasma (3). This discovery has facilitated the development of noninvasive prenatal diagnostic approaches based simply on the analysis of a maternal blood sample (4). The noninvasive nature of maternal plasmabased approaches represents a major advantage over conventional methods of prenatal diagnosis, such as amniocentesis and chorionic villus sampling, which are associated with a small but finite risk of fetal loss. However, a technical challenge experienced by many workers in the field relates to the ability to discriminate fetal DNA from the coexisting background of maternal DNA in maternal plasma. During pregnancy, fetal DNA amounts to Ϸ3-6% of the total DNA in maternal plasma (5). Hence, the diagnostic reliability of fetal DNA analysis in maternal plasma depends on the sensitivity and specificity of the analytical system for the detection of fetal-specific markers.Fetal SRY and RHD DNA detection from maternal plasma has reached close to 100% accuracy, as confirmed by many largescale evaluations (6-9). The high level of diagnostic accuracy is attained by the analytical sensitivity contributed by the use of real-time quantitative PCR (5, 10) and the analytical specifici...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.