Each single upconversion nanocrystal (UCNC) usually contains thousands of photon sensitizers and hundreds of photon activators to up-convert near-infrared photons into visible and ultraviolet emissions. Though in principle further increasing the sensitizers' concentration will enhance the absorption efficiency to produce brighter nanocrystals, typically 20% of Yb ions has been used to avoid the so-called "concentration quenching" effect. Here we report that the concentration quenching effect does not limit the sensitizer concentration and NaYbF is the most bright host matrix. Surface quenching and the large size of NaYbF nanocrystals are the only factors limiting this optimal concentration. Therefore, we further designed sandwich nanostructures of NaYbF between a small template core to allow an epitaxial growth of the size-tunable NaYbF shell enclosed by an inert shell to minimize surface quenching. As a result, the suspension containing 25.2 nm sandwich structure UCNCs is 1.85 times brighter than the homogeneously doped ones, and the brightness of each single 25.2 nm heterogeneous UCNC is enhanced by nearly 3 times compared to the NaYF: 20% Yb, 4% Tm UCNCs in similar sizes. Particularly, the blue emission intensities of the UCNCs with the sandwich structure in the size of 13.6 and 25.2 nm are 1.36 times and 3.78 times higher than that of the monolithic UCNCs in the similar sizes. Maximizing the sensitizer concentration will accelerate the development of brighter and smaller UCNCs as more efficient biomolecule probes or photon energy converters.
This work, for the first time, reports visible-light active bare graphitic carbon nitride nanotubes (CN NTs) for photocatalytic hydrogen generation, even in the absence of any cocatalyst. Upon uniform dispersion of the cocatalysts, Ag-Cu nanoparticles, on the well-ordered bare CN NTs, they exhibit twice the H evolution rate of the bare CN NTs. The improved activity is attributed to their unique tubular nanostructure, strong metal-support interaction, and efficient photoinduced electron-hole separation compared to their bare and monometallic counterparts, evidenced by complementary characterization techniques. This work reveals that the H production rates correlate well with the oxidation potentials of the sacrificial reagents used. Triethylamine (TEA) outperforms other sacrificial reagents, including triethanolamine (TEOA) and methanol. Mechanistic studies on the role of various sacrificial reagents in photocatalytic H generation demonstrate that irreversible photodegradation of TEA into diethylamine and acetaldehyde via monoelectronic oxidation contributes to the improved H yield. Similarly, TEOA is oxidized to diethanolamine and glycolaldehyde, whereas methanol is unable to quickly capture the photoinduced holes and remains intact due to the low oxidation potential.
Implantable medical devices (IMDs) have experienced a rapid progress in recent years to the advancement of state-of-the-art medical practices. However, the majority of this equipment requires external power sources like batteries to operate, which may restrict their application for in vivo situations. Furthermore, these external batteries of the IMDs need to be changed at times by surgical processes once expired, causing bodily and psychological annoyance to patients and rising healthcare financial burdens. Currently, harvesting biomechanical energy in vivo is considered as one of the most crucial energybased technologies to ensure sustainable operation of implanted medical devices. This review aims to highlight recent improvements in implantable triboelectric nanogenerators (iTENG) and implantable piezoelectric nanogenerators (iPENG) to drive self-powered, wireless healthcare systems. Furthermore, their potential applications in cardiac monitoring, pacemaker energizing, nerve-cell stimulating, orthodontic treatment and real-time biomedical monitoring by scavenging the biomechanical power within the human body, such as heart beating, blood flowing, breathing, muscle stretching and continuous vibration of the lung are summarized and presented. Finally, a few crucial problems which significantly affect the output performance of iTENGs and iPENGs under in vivo environments are addressed. Implantable Nanogenerators
We report a rapid solution-phase strategy to synthesize alloyed PtNi nanoparticles which demonstrate outstanding functionality for the oxygen reduction reaction (ORR). This one-pot coreduction colloidal synthesis results in a monodisperse population of single-crystal nanoparticles of rhombic dodecahedral morphology with Pt-enriched edges and compositions close to Pt 1 Ni 2 . We use nanoscale 3D compositional analysis to reveal for the first time that oleylamine (OAm)-aging of the rhombic dodecahedral Pt 1 Ni 2 particles results in Ni leaching from surface facets, producing aged particles with concave faceting, an exceptionally high surface area, and a composition of Pt 2 Ni 1 . We show that the modified atomic nanostructures catalytically outperform the original PtNi rhombic dodecahedral particles by more than two-fold and also yield improved cycling durability. Their functionality for the ORR far exceeds commercially available Pt/C nanoparticle electrocatalysts, both in terms of mass-specific activities (up to a 25-fold increase) and intrinsic area-specific activities (up to a 27-fold increase).
The demand for clean energy is strong, and the shift from fossil-fuel-based energy to environmentally friendly sources is the next step to eradicating the world’s greenhouse gas (GHG) emissions. Solar energy technology has been touted as one of the most promising sources for low-carbon, non-fossil fuel energy production. However, the true potential of solar-based technologies is established by augmenting efficiency through satisfactory environmental performance in relation to other renewable energy systems. This paper presents an environmental life-cycle assessment (LCA) of a solar-photovoltaic (PV) system and a solar-thermal system. Single crystalline Si solar cells are considered for the solar PV system and an evacuated glass tube collector is considered for the solar thermal system in this analysis. A life-cycle inventory (LCI) is developed considering all inputs and outputs to assess and compare the environmental impacts of both systems for 16 impact indicators. LCA has been performed by the International Reference Life Cycle Data System (ILCD), Impact 2002+, Cumulative Energy Demand (CED), Eco-points 97, Eco-indicator 99 and Intergovernmental Panel on Climate Change (IPCC) methods, using SimaPro software. The outcomes reveal that a solar-thermal framework provides more than four times release to air ( 100 % ) than the solar-PV ( 23 . 26 % ), and the outputs by a solar-PV system to soil ( 27 . 48 % ) and solid waste ( 35 . 15 % ) are about one third that of solar-thermal. The findings also depict that the solar panels are responsible for the most impact in the considered systems. Moreover, uncertainty and sensitivity analysis has also been carried out for both frameworks, which reveal that Li-ion batteries and copper-indium-selenium (CIS)-solar collectors perform better than others for most of the considered impact categories. This study revealed that a superior environmental performance can be achieved by both systems through careful selection of the components, taking into account the toxicity aspects, and by minimizing the impacts related to the solar panel, battery and heat storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.