Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. MethodsWe did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. FindingsWe included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58•0%) were male. Median gestational age at birth was 38 weeks (IQR 36-39) and median bodyweight at presentation was 2•8 kg (2•3-3•3). Mortality among all patients was 37 (39•8%) of 93 in low-income countries, 583 (20•4%) of 2860 in middle-income countries, and 50 (5•6%) of 896 in high-income countries (p<0•0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90•0%] of ten in lowincome countries, 97 [31•9%] of 304 in middle-income countries, and two [1•4%] of 139 in high-income countries; p≤0•0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2•78 [95% CI 1•88-4•11], p<0•0001; middle-income vs high-income countries, 2•11 [1•59-2•79], p<0•0001), sepsis at presentation (1•20 [1•04-1•40], p=0•016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4-5 vs ASA 1-2, 1•82 [1•40-2•35], p<0•0001; ASA 3 vs ASA 1-2, 1•58, [1•30-1•92], p<0•0001]), surgical safety checklist not used (1•39 [1•02-1•90], p=0•035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1•96, [1•4...
Purpose: The aim of our study was to develop an appendicitis score incorporating a urine biomarker, Leucine rich alpha-2-glycoprotein (LRG), for evaluation of children with abdominal pain. Methods: From January to August 2017 we prospectively enrolled children aged 4-16 years old admitted for suspected appendicitis. Urine samples for LRG analysis were obtained preoperatively and quantified by enzyme-linked immunosorbent assay (ELISA) after correction for patient hydration status. The diagnosis of appendicitis was based on operative findings and histology. Logistic regression was used to identify prospective predictors.Results: A total of 148 patients were recruited, of which 42(28.4%) were confirmed appendicitis. Our Appendicitis Urinary Biomarker (AuB) model incorporated urine LRG with 3 clinical predictors: 'constant pain', 'right iliac fossa tenderness', 'pain on percussion'. Area under the ROC curve for AuB was 0.82 versus 0.78 for the Pediatric Appendicitis Score (PAS) on the same cohort of patients. A model-calculated risk score of b 0.15 is interpreted as low risk of appendicitis. Sensitivity for the AuB at this cutoff was 97.6%, specificity 37.7%, negative predictive value 97.6%, positive predictive value 38.3%, and negative likelihood ratio 0.06. Conclusion: The noninvasive AuB score appears promising as a diagnostic tool for excluding appendicitis in children without the need for blood sampling. Type of study: Study of diagnostic test. Level of evidence: Level III.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.