Aldehyde
dehydrogenases (ALDHs) are responsible for the metabolism of aldehydes
(exogenous and endogenous) and possess vital physiological and toxicological
functions in areas such as CNS, inflammation, metabolic disorders,
and cancers. Overexpression of certain ALDHs (e.g., ALDH1A1) is an
important biomarker in cancers and cancer stem cells (CSCs) indicating
the potential need for the identification and development of small
molecule ALDH inhibitors. Herein, a newly designed series of quinoline-based
analogs of ALDH1A1 inhibitors is described. Extensive medicinal chemistry
optimization and biological characterization led to the identification
of analogs with significantly improved enzymatic and cellular ALDH
inhibition. Selected analogs, e.g., 86 (NCT-505) and 91 (NCT-506), demonstrated target engagement in a cellular
thermal shift assay (CETSA), inhibited the formation of 3D spheroid
cultures of OV-90 cancer cells, and potentiated the cytotoxicity of
paclitaxel in SKOV-3-TR, a paclitaxel resistant ovarian cancer cell
line. Lead compounds also exhibit high specificity over other ALDH
isozymes and unrelated dehydrogenases. The in vitro ADME profiles and pharmacokinetic evaluation of selected analogs
are also highlighted.
A series of quinazolin-4-one based hydroxamic acids was rationally designed and synthesized as novel dual PI3K/HDAC inhibitors by incorporating an HDAC pharmacophore into a PI3K inhibitor (Idelalisib) via an optimized linker. Several of these dual inhibitors were highly potent (IC 50 < 10 nM) and selective against PI3Kγ, δ and HDAC6 enzymes and exhibited good antiproliferative activity against multiple cancer cell lines. The lead compound 48c, induced necrosis in several mutant and FLT3-resistant AML cell lines and primary blasts from AML patients, while showing no cytotoxicity against normal PBMCs, NIH3T3, and HEK293 cells. Target engagement of PI3Kδ and HDAC6 by 48c was demonstrated in MV411 cells using the cellular thermal shift assay (CETSA). Compound 48c showed good pharmacokinetics properties in mice via intraperitoneal (ip) administration and provides a means to examine the biological effects of inhibiting these two important enzymes with a single molecule, either in vitro or in vivo.
Aldehyde dehydrogenase enzymes (ALDHs) have a broad spectrum of biological activities through the oxidation of both endogenous and exogenous aldehydes. Increased expression of ALDH1A1 has been identified in a wide-range of human cancer stem cells and is associated with cancer relapse and poor prognosis, raising the potential of ALDH1A1 as a therapeutic target. To facilitate quantitative high-throughput screening (qHTS) campaigns for the discovery, characterization and structure-activity-relationship (SAR) studies of small molecule ALDH1A1 inhibitors with cellular activity, we show herein the miniaturization to 1536-well format and automation of a high-content cell-based ALDEFLUOR assay. We demonstrate the utility of this assay by generating dose-response curves on a comprehensive set of prior art inhibitors as well as hundreds of ALDH1A1 inhibitors synthesized in house. Finally, we established a screening paradigm using a pair of cell lines with low and high ALDH1A1 expression, respectively, to uncover novel cell-active ALDH1A1-specific inhibitors from a collection of over 1,000 small molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.