Nucleation of crystalline solids, the first stage of crystallization from solution, is not yet fully understood. This is true for both small molecules of low molecular weight and more complicated large molecules. To obtain direct structural information about the process of nucleation and crystallization of small molecules, smallangle X-ray scattering (SAXS) has been used to study the crystallization of the amino acid glycine from its supersaturated aqueous solution. The scattering data was analyzed using the unified fit model, which is well-suited for studying complex systems that may contain multiple levels of related structural features. The results suggest that glycine molecules exist as dimers in supersaturated solution. The system obeys power-law behavior that indicates the presence of fractals in the solution. A transformation from mass fractal structure to surface fractal structure is observed during the crystallization process, which could be the signature of a two-step nucleation process.
Methanol oxidation was studied on arc-melted Pt-Ru-Os alloys and on fuel cell catalysts prepared by the NaBH4 reduction of metal chloride salts. Both the arc-melted alloys and the high surface area catalysts have x-ray diffraction patterns indicative of single-phase face-centered cubic lattices. Hydrogen adsorption/desorption measurements on the polished alloy electrodes, in the presence of adsorbed CO (25°C), show that selected ternary alloys have significant hydrogen adsorption/desorption integrals at adsorption potentials where Pt:Ru (1:1) was fully blocked and higher integrals at all adsorption potentials studied up to 400 mV vs. the reference hydrogen electrode. In situ diffuse reflection Fourier transform infrared spectroscopy of the fuel cell anodes showed that the alloy catalysts had reduced CO coverage relative to Pt, with the ternary catalyst showing the least coverage. Steady-state voltammetry of the arc-melted alloys at 25°C confirmed that Pt-Ru-Os (65:25:10) is more active than Pt-Ru (1:1), particularly above 0.6 V. Pt-Ru-Os (65:25:10) methanol fuel cell performance curves were consistently superior to those of Pt-Ru (1:1) (e.g., typically at 90°C, 0.4 V; 340 mA/cm2 with Pt-Ru-Os vs. 260 mA/cm2 with Pt-Ru). InfrocluctionPractical direct methanol fuel cells require improved catalysts for the half-reaction CH3OH + H2O -* CO2 + 6W + 6e Although adsorptive dehydrogenation of methanol on ) unless CC License in place (see abstract). ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 134.129.182.74 Downloaded on 2015-06-15 to IP
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.