Somatic mutations that activate phosphoinositide 3-kinase (PI3K) have been identified in the p110-α catalytic subunit (PIK3CA) 1. They are most frequently observed in two hotspots: the helical domain (E545K and E542K) and the kinase domain (H1047R). Although the PIK3CA mutants are transforming in vitro, their oncogenic potential has not been assessed in genetically engineered mouse models. Furthermore, clinical trials with PI3K inhibitors have recently been initiated, and it is unknown if their efficacy will be restricted to specific, genetically defined malignancies. In this study, we engineered an inducible bitransgenic mouse model that develops lung adenocarcinomas initiated and maintained by expression of p110-α H1047R. Treatment of these tumors with NVP-BEZ235, a dual pan PI3K/mTOR inhibitor in clinical development, led to marked tumor regression as shown by PET-CT, MRI and microscopic examination. In contrast, mouse lung cancers driven by mutant K-Ras did not substantially respond to single-agent NVP-BEZ235. However, when NVP-BEZ235 was combined with a MEK inhibitor, ARRY-142886, there was dramatic synergy in shrinking these K-Ras mutant cancers. These in vivo studies suggest that inhibitors of the PI3K/mTOR pathway may be active in cancers with PIK3CA mutations, and, when combined with MEK inhibitors, may effectively treat K-RAS mutated lung cancers.
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin inhibitor (mTOR) pathway is often constitutively activated in human tumor cells, providing unique opportunities for anticancer therapeutic intervention. NVP-BEZ235 is an imidazo [4,5-c]quinoline derivative that inhibits PI3K and mTOR kinase activity by binding to the ATP-binding cleft of these enzymes. In cellular settings using human tumor cell lines, this molecule is able to effectively and specifically block the dysfunctional activation of the PI3K pathway, inducing G 1 arrest. The cellular activity of NVP-BEZ235 translates well in in vivo models of human cancer. Thus, the compound was well tolerated, displayed disease stasis when administered orally, and enhanced the efficacy of other anticancer agents when used in in vivo combination studies. Ex vivo pharmacokinetic/pharmacodynamic analyses of tumor tissues showed a time-dependent correlation between compound concentration and PI3K/Akt pathway inhibition. Collectively, the preclinical data show that NVP-BEZ235 is a potent dual PI3K/mTOR modulator with favorable pharmaceutical properties. NVP-BEZ235 is currently in phase I clinical trials.
Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110-A. These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the anti-HER2 antibody trastuzumab. The PI3K pathway is, therefore, an attractive target for cancer therapy. We have studied NVP-
Characterization of the molecular pathways that are required for the viability and maintenance of self-renewing tumor-initiating cells may ultimately lead to improved therapies for cancer. In this study, we show that a CD133 ؉ /CD44 ؉ population of cells enriched in prostate cancer progenitors (PCaPs) has tumor-initiating potential and that these progenitors can be expanded under nonadherent, serum-free, sphere-forming conditions. Cells grown under these conditions have increased in vitro clonogenic and in vivo tumorigenic potential. mRNA expression analysis of cells grown under sphere-forming conditions, compared with long-term monolayer cultures, revealed preferential activation of the PI3K/AKT signaling pathway. PI3K p110␣ and -protein levels were higher in cells grown under sphere-forming conditions, and phosphatase and tensin homolog (PTEN) knockdown by shRNA led to an increase in sphere formation as well as increased clonogenic and tumorigenic potential. Similarly, shRNA knockdown of FoxO3a led to an increase in tumorigenic potential. Consistent with these results, inhibition of PI3K activity by the dual PI3K/mTOR inhibitor NVP-BEZ235 led to growth inhibition of PCaPs. Taken together, our data strongly suggest that the PTEN/PI3K/Akt pathways are critical for prostate cancer stem-like cell maintenance and that targeting PI3K signaling may be beneficial in prostate cancer treatment by eliminating prostate cancer stem-like cells.FoxO3a ͉ PI3Kinase ͉ prostate cancer progenitors
Insulin-like growth factors and their receptor (IGF-1R) have been implicated in cancer pathophysiology. We demonstrate that IGF-1R is universally expressed in various hematologic (multiple myeloma, lymphoma, leukemia) and solid tumor (breast, prostate, lung, colon, thyroid, renal, adrenal cancer, retinoblastoma, and sarcoma) cells. Specific IGF-1R inhibition with neutralizing antibody, antagonistic peptide, or the selective kinase inhibitor NVP-ADW742 has in vitro activity against diverse tumor cell types (particularly multiple myeloma), even those resistant to conventional therapies, and triggers pleiotropic antiproliferative/proapoptotic molecular sequelae, delineated by global transcriptional and proteomic profiling. NVP-ADW742 monotherapy or its combination with cytotoxic chemotherapy had significant antitumor activity in an orthotopic xenograft MM model, providing in vivo proof of principle for therapeutic use of selective IGF-1R inhibitors in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.