glass opacities, associated with multilobe and posterior involvement, bilateral distribution, and subsegmental vessel enlargement.Keys Results:1. In this prospective study of patients in Rome, Italy, the sensitivity, specificity, and accuracy of CT for COVID-19 were 97%, 56%, and 72%, respectively, using RT-PCR as standard of reference. 2.On chest CT, ground-glass opacities (GGO) were present in 100% of patients with RT-PCR confirmed COVID-19. 93% of patients had multilobe and posterior lung involvement; 91% of patients had bilateral pneumonia. 3.On CT, subsegmental vascular enlargement (more than 3 mm diameter) in areas of lung opacity was observed in 89% of patients with confirmed COVID-19 pneumonia, with unclear etiology. Abbreviations:SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2 Abstract BackgroundThe standard for diagnosis of SARS-CoV-2 virus is reverse transcription polymerase chain reaction (RT-PCR) test, but chest CT may play a complimentary role in the early detection of COVID-19 pneumonia. suspected COVID-19 infection and respiratory symptoms were enrolled. Exclusion criteria were: chest CT with contrast medium performed for vascular indications, patients who refused chest CT or hospitalization, and severe CT motion artifact. All patients underwent RT-PCR and chest CT. Diagnostic performance of CT was calculated using RT-PCR as reference. Chest CT features were calculated in a subgroup of RT-PCR-positive and CT-positive patients. CT features of hospitalized patients and patient in home isolation were compared by using Pearson chi squared test. ResultsOur study population comprised 158 consecutive study participants (83 male and 75 female, mean age 57 y 17). Fever was observed in 97/158 (61%), cough in 88/158 (56%), dyspnea in 52/158 (33%), lymphocytopenia in 95/158 (60%), increased C-reactive protein level in 139/158 (88%), and elevated lactate dehydrogenase in 128/158 (81%) study participants. Sensitivity, specificity, and accuracy of CT were 97% (60/62)[95% IC, 88-99%], 56% (54/96)[95% IC,45-66%] and 72% (114/158)[95% IC 64-78%], respectively. In the subgroup of RT-PCR-positive and CT-positive patients, ground-glass opacities (GGO) were present in 58/58 (100%), multilobe and posterior involvement were both present in 54/58 (93%), bilateral pneumonia in 53/58 (91%), and subsegmental vessel enlargement (> 3 mm) in 52/58 (89%) of study participants. ConclusionThe typical pattern of COVID-19 pneumonia in Rome, Italy, was peripherally ground-glass opacities with multilobe and posterior involvement, bilateral distribution, and subsegmental vessel enlargement (> 3 mm). Chest CT sensitivity was high (97%) but with lower specificity (56%).
At 6-month follow-up chest CT, COVID-19 postacute sequelae were detected in 72% of patients: fibroticlike changes were the most common residual findings (72%), followed by ground-glass opacities (42%). KEYS RESULTS:1. Baseline Lung Severity Score (>14) showed an optimal performance in predicting fibrotic-like changes at follow-up (AUC: .91; sensitivity: 88%; specificity: 80%).2. Multivariable analysis showed that male sex, cough, lymphocytosis and Quantitative Chest Computed Tomography well-aerated lung volume were significant predictors of fibrotic-like changes at six-month follow-up with an inverse correlation (AUC: .
In December 2019 a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 was identified and the disease associated was named coronavirus disease 2019 (COVID-19). Fever, cough, myalgia, fatigue associated to dyspnea represent most common clinical symptoms of the disease. The reference standard for diagnosis of severe acute respiratory syndrome coronavirus 2 infection is real time reverse-transcription polymerase chain reaction test applied on respiratory tract specimens. Despite of lower specificity, chest computed tomography (CT), as reported in manifold scientific studies, showed high sensitivity, therefore it may help in the early detection, management and follow-up of COVID-19 pneumonia. Patients affected by COVID-19 pneumonia usually showed on chest CT some typical features, such as: Bilateral ground glass opacities characterized by multilobe involvement with posterior and peripheral distribution; parenchymal consolidations with or without air bronchogram; interlobular septal thickening; crazy paving pattern, represented by interlobular and intralobular septal thickening surrounded by ground-glass opacities; subsegmental pulmonary vessels enlargement (> 3 mm). Halo sign, reversed halo sign, cavitation and pleural or pericardial effusion represent some of atypical findings of COVID-19 pneumonia. On the other hand lymphadenopathy’s and bronchiectasis’ frequency is unclear, indeed conflicting data emerged in literature. Radiologists play a key role in recognition of high suspicious findings of COVID-19 on chest CT, both typical and atypical ones. Thus, the aim of this review is to illustrate typical and atypical CT findings of COVID-19.
Radiomics has been playing a pivotal role in oncological translational imaging, particularly in cancer diagnosis, prediction prognosis, and therapy response assessment. Recently, promising results were achieved in management of cancer patients by extracting mineable high-dimensional data from medical images, supporting clinicians in decision-making process in the new era of target therapy and personalized medicine. Radiomics could provide quantitative data, extracted from medical images, that could reflect microenvironmental tumor heterogeneity, which might be a useful information for treatment tailoring. Thus, it could be helpful to overcome the main limitations of traditional tumor biopsy, often affected by bias in tumor sampling, lack of repeatability and possible procedure complications. This quantitative approach has been widely investigated as a non-invasive and an objective imaging biomarker in cancer patients; however, it is not applied as a clinical routine due to several limitations related to lack of standardization and validation of images acquisition protocols, features segmentation, extraction, processing, and data analysis. This field is in continuous evolution in each type of cancer, and results support the idea that in the future Radiomics might be a reliable application in oncologic imaging. The first part of this review aimed to describe some radiomic technical principles and clinical applications to gastrointestinal oncologic imaging (CT and MRI) with a focus on diagnosis, prediction prognosis, and assessment of response to therapy.
Introduction COVID-19 pneumonia is characterized by ground-glass opacities (GGOs) and consolidations on Chest CT, although these CT features cannot be considered specific, at least on a qualitative analysis. The aim is to evaluate if Quantitative Chest CT could provide reliable information in discriminating COVID-19 from non-COVID-19 patients. Materials and methods From March 31, 2020 until April 18, 2020, patients with Chest CT suggestive for interstitial pneumonia were retrospectively enrolled and divided into two groups based on positive/negative COVID-19 RT-PCR results. Patients with pulmonary resection and/or CT motion artifacts were excluded. Quantitative Chest CT analysis was performed with a dedicated software that provides total lung volume, healthy parenchyma, GGOs, consolidations and fibrotic alterations, expressed both in liters and percentage. Two radiologists in consensus revised software analysis and adjusted areas of lung impairment in case of non-adequate segmentation. Data obtained were compared between COVID-19 and non-COVID-19 patients and p < 0.05 were considered statistically significant. Performance of statistically significant parameters was tested by ROC curve analysis. Results Final population enrolled included 190 patients: 136 COVID-19 patients (87 male, 49 female, mean age 66 ± 16) and 54 non-COVID-19 patients (25 male, 29 female, mean age 63 ± 15). Lung quantification in liters showed significant differences between COVID-19 and non-COVID-19 patients for GGOs (0.55 ± 0.26L vs 0.43 ± 0.23L, p = 0.0005) and fibrotic alterations (0.05 ± 0.03 L vs 0.04 ± 0.03 L, p < 0.0001). ROC analysis of GGOs and fibrotic alterations showed an area under the curve of 0.661 (cutoff 0.39 L, 68% sensitivity and 59% specificity, p < 0.001) and 0.698 (cutoff 0.02 L, 86% sensitivity and 44% specificity, p < 0.001), respectively. Conclusions Quantification of GGOs and fibrotic alterations on Chest CT could be able to identify patients with COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.