This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
Scenedesmus obliquus, Chlorella vulgaris, Chlorella kessleri and a natural Bloom were cultivated in batch experiments, under controlled conditions, in urban wastewater (WW) and synthetic wastewater (SW) under 5% CO2 in air, with the object of estimating their capacity for nutrient removal, carbon dioxide biofixation, and generation of valuable biomass. In both culture media, the Bloom (Bl) and Scenedesmus (Sc) showed higher final biomass concentration (dried weight, dw) than the other species; the maximum yield obtained was 1950 ± 243 mg L(-1) for Bl and the minimum 821 ± 88 mg L(-1) for Cv, both in synthetic wastewater. Maximum specific growth rate values do not show significant differences between any of the 4 strains tested (p ≤ 0.05), nor between the 2 culture media. A new homogeneous method of calculating productivities has been proposed. Nitrogen removal in all the reactors was higher than 90%, except for BlSW (79%), and for phosphorus, the removal was higher than 98% in all trials. Maximum CO2 consumption rates reached were 424.4 and 436.7 mg L(-1) d(-1) for ScSW and ScWW respectively.
The streams from municipal wastewater treatment plants (WWTP) have been considered a valuable medium for mass cultivation of algal biomass. The aim of this work is to test and compare the performance of Chlorella vulgaris on several streams from five stages, from two different WWTP. The results showed biomass yields ranging from 39 to 195mg dry-weightl(-1)days(-1). The best performance as biomass production was obtained with the centrate (effluent from drying the anaerobic sludge). After testing a wide range of N/P ratios with centrate, the highest productivity and growth rates were obtained with the original N/P ratio (2.0) of this stream. The highest removal rates were of 9.8 (N) and 3.0 (P) mgl(-1)days(-1), in the centrate. Finally, this research also suggests that microalgal production seems to be a promising process when coupled to wastewater treatment.
A laboratory-scale flat panel photobioreactor was operated for the continuous growth of Scenedesmus obliquus and consequent removal of nutrients in wastewater. This study develops a simple model by which biomass values in continuous operation can be predicted from kinetic growth parameters obtained from a shorter batch experiment. Based on this study, biomass concentrations and productivities in continuous operation can be successfully predicted as a function of the specific hydraulic retention time (HRT) assumed. Considerable biomass production and nutrient uptake from wastewater were achieved in the experiment. Optimum operating conditions for the reactor depend on the particular objective: the maximization of biomass production and carbon dioxide biofixation involves a HRT of 2 μ(-1) (specific growth rate), whereas efficient nutrient removal involves a HRT as close as possible to μ(-1) (as long as discharges comply fully with the parameters set); alternatively biomass intended for biodiesel or biogas production would involve a HRT > 2 μ(-1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.