Gold-coated collagen nanofibers (GCNFs) were produced by a single-step reduction process and used for the growth and differentiation of human adult stem cells. The nanomaterials were characterized by a number of analytical techniques including electron microscopy and spectroscopy. They were found to be biocompatible and to improve the myocardial and neuronal differentiation process of the mesenchymal stem cells isolated from the placental chorionic component. The expression of specific differentiation markers (atrium, natriuretic peptide, actin F and actin monomer, glial fibrilary acidic protein, and neurofilaments) was investigated by immunocytochemistry.
Microsatellite instability (MSI) or the deficiency of mismatch repair (MMR) proteins is one of the molecular pathways of colorectal tumorigenesis and may have important clinical implications in predicting the treatment response. We evaluated the relationship between clinicopathological features and MMR proteins [mutL homologue 1 (MLH1), mutS homologue 2 (MSH2), mutS homologue 6 (MSH6), postmeiotic segregation increased 2 (PMS2)], adhesion molecules (E-cadherin, beta-catenin) and caudal-type homeobox 2 (CDX2) in 31 patients with colon adenocarcinoma, using immunohistochemistry. We also aimed to assess the prognostic value of the studied proteins. MLH1 loss was correlated to PMS2 loss (p=0.006) and MSH2 loss (p=0.023); MSH2 loss was significantly associated to MSH6 loss (p=0.011). Tumors with MSH6 loss, together with tumors with PMS2 loss, covered all the patients with MSI status. We found a significant correlation between MSI tumors and mucinous histological type (p=0.03), but no significant associations with other clinicopathological features or with survival rate. There was a significant correlation between E-cadherin expression and differentiation degree (p=0.018) and between beta-catenin expression and lymph node invasion (p=0.046). No significant association between CDX2 loss and any clinical or pathological features was found (p>0.05). No significant differences were identified in overall survival according to E-cadherin, beta-catenin or CDX2 expression (p>0.05). In our study, PMS2 loss was significantly correlated with CDX2 loss (p=0.03). In conclusion, the molecular analysis of biological markers for colon cancer may be important for patient stratification, in order to select the optimal treatment algorithm. Our results suggest that probably the double panel (MSH6 and PMS2) is enough to detect the MSI status, instead of using the quadruple panel.
Glioblastoma (GBM) consists of a heterogeneous collection of competing cellular clones which communicate with each other and with the tumor microenvironment (TME). MicroRNAs (miRNAs) present various exchange mechanisms: free miRNA, extracellular vesicles (EVs), or gap junctions (GJs). GBM cells transfer miR-4519 and miR-5096 to astrocytes through GJs. Oligodendrocytes located in the invasion front present high levels of miR-219-5p, miR-219-2-3p, and miR-338-3p, all related to their differentiation. There is a reciprocal exchange between GBM cells and endothelial cells (ECs) as miR-5096 promotes angiogenesis after being transferred into ECs, whereas miR-145-5p acts as a tumor suppressor. In glioma stem cells (GSCs), miR-1587 and miR-3620-5p increase the proliferation and miR-1587 inhibits the hormone receptor co-repressor-1 (NCOR1) after EVs transfers. GBM-derived EVs carry miR-21 and miR-451 that are up-taken by microglia and monocytes/macrophages, promoting their proliferation. Macrophages release EVs enriched in miR-21 that are transferred to glioma cells. This bidirectional miR-21 exchange increases STAT3 activity in GBM cells and macrophages, promoting invasion, proliferation, angiogenesis, and resistance to treatment. miR-1238 is upregulated in resistant GBM clones and their EVs, conferring resistance to adjacent cells via the CAV1/EGFR signaling pathway. Decrypting these mechanisms could lead to a better patient stratification and the development of novel target therapies.
Vascular endothelial growth factor (VEGF) is a key growth factor, regulating the neovascularization, during embryogenesis, skeletal growth, reproductive functions and pathological processes. The VEGF receptors (VEGFR) are present in endothelial cells and other cell types, such as vascular smooth muscle cells, hematopoietic stem cells, monocytes, neurons, macrophages, and platelets.Angiogenesis is initiated by the activation of vascular endothelial cells through several factors. The excess dermal vascularity and VEGF production are markers of psoriasis.The pathological role of VEGF/VEGFR signaling during the psoriasis onset and evolution makes it a promising target for the treatment of psoriasis. Antibodies and other types of molecules targeting the VEGF pathway are currently evaluated in arresting the evolution of psoriasis.
Aim: To evaluate the morphostructural aspects and nail vascularity in the nail unit of patients with psoriasis, and to evaluate whether there are differences among psoriatic patients with and without nail involvement. Material and methods: Nail plates and nail bed changes, nailfold vessel resistance index (NVRI), power and color Doppler blood flow appearances were investigated in 23 patients with moderate-to-severe psoriasis, with and without nail involvement, and compared to those of 11 healthy participants. Results: Ventral nail plate deposits were present only in psoriasis patients. Irregular or totally fused nail plates and increased nail plate thickness was frequently observed in psoriasis patients compared to controls. NVRI was increased in psoriatic patients' nails compared to controls (0.62 vs. 0.57, p<0.0001). In the psoriasis patient group there was significant statistical difference in NVRI in patients with nail involvement compared to those without (0.66 vs. 0.55, p<0.0001). Conclusions: High-frequency gray scale sonography provides valuable information regarding morphostructural changes in nail unit structure in patients with psoriasis. Power Doppler imaging enables blood flow assessment in psoriasis nail induced changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.