Mantle cell lymphoma (MCL) is a mature B-cell neoplasm with an aggressive behavior, characterized by the t(11;14)(q13;q32). Several secondary genetic abnormalities with a potential role in the oncogenic process have been described. Studies of large MCL series using conventional cytogenetics, and correlating with proliferation and survival, are scarce. We selected 145 MCL cases at diagnosis, displaying an aberrant karyotype, from centers belonging to the Spanish Cooperative Group for Hematological Cytogenetics. Histological subtype, proliferative index and survival data were ascertained. Combined cytogenetic and molecular analyses detected CCND1 translocations in all cases, mostly t(11;14)(q13;q32). Secondary aberrations were present in 58% of patients, the most frequent being deletions of 1p, 13q and 17p, 10p alterations and 3q gains. The most recurrent breakpoints were identified at 1p31-32, 1p21-22, 17p13, and 1p36. Aggressive blastoid/pleomorphic variants displayed a higher karyotypic complexity, a higher frequency of 1p and 17p deletions and 10p alterations, a higher proliferation index and poor survival. Gains of 3q and 13q and 17p13 losses were associated with reduced survival times. Interestingly, gains of 3q and 17p losses added prognostic significance to the morphology in a multivariate analysis. Our findings confirm previous observations indicating that proliferation index, morphology and several secondary genetic alterations (3q gains and 13q and 17p losses) have prognostic value in patients with MCL. Additionally, we observed that 3q gains and 17p losses detected by conventional cytogenetics are proliferation-independent prognostic markers indicating poor outcome.
BackgroundMore than 50% of patients with myelodysplastic syndromes present cytogenetic aberrations at diagnosis. Partial or complete deletion of the long arm of chromosome 5 is the most frequent abnormality. The aim of this study was to apply fluorescence in situ hybridization of 5q31 in patients diagnosed with de novo myelodysplastic syndromes in whom conventional banding cytogenetics study had shown a normal karyotype, absence of metaphases or an abnormal karyotype without evidence of del(5q). Design and MethodsWe performed fluorescence in situ hybridization of 5q31 in 716 patients, divided into two groups: group A patients (n=637) in whom the 5q deletion had not been detected at diagnosis by conventional banding cytogenetics and group B patients (n=79), in whom cytogenetic analysis had revealed the 5q deletion (positive control group). ResultsIn group A (n=637), the 5q deletion was detected by fluorescence in situ hybridization in 38 cases (5.96%). The majority of positive cases were diagnosed as having the 5q-syndrome. The deletion was mainly observed in cases in which the cytogenetics study had shown no metaphases or an aberrant karyotype with chromosome 5 involved. In group B (n=79), the 5q deletion had been observed by cytogenetics and was confirmed to be present in all cases by fluorescence in situ hybridization of 5q31. ConclusionsFluorescence in situ hybridization of 5q31 detected the 5q deletion in 6% of cases without clear evidence of del(5q) by conventional banding cytogenetics. We suggest that fluorescence in situ hybridization of 5q31 should be performed in cases of a suspected '5q-syndrome' and/or if the cytogenetic study shows no metaphases or an aberrant karyotype with chromosome 5 involved (no 5q-chromosome).
Therapy-related myelodysplasia and acute myeloid leukemia (t-MDS/AML) is a malignancy occurring after exposure to chemotherapy and/or radiotherapy. Polymorphisms involved in chemotherapy/radiotherapy response genes could be related to an increased risk of developing this neoplasia. We have studied 11 polymorphisms in genes of drug detoxification pathways (NQO1, glutathione S-transferase pi) and DNA repair xeroderma pigmentosum, complementation group (3) (XPC(3), X-ray repair cross complementing protein (1)), Nijmegen breakage syndrome (1), excision repair cross-complementing rodent repair deficiency, complementation group (5) and X-ray repair cross complementing protein (3) and in the methylene tetrahydrofolate reductase gene (MTHFR(2), 677C4T, 1298A4C), involved in DNA synthesis. The analyzed groups were a t-MDS/ AML patients group (n ¼ 81) and a matched control group (n ¼ 64) treated similarly, and they did not develop t-MDS/AML. We found no significant differences when the groups were compared globally. However, when analysis was carried out according to the primary neoplasia involved, a significant association was observed between the MTHFR haplotype (single nucleotide polymorphisms 677 and 1298) and the risk of developing t-MDS/AML in the breast cancer patients group (P ¼ 0.016) and cyclophosphamide-treated hematological disease group (P ¼ 0.005). Risk haplotype was different for each case, corresponding to the 677T1298A haplotype after breast cancer treatment and the 677C1298C haplotype after hematological malignancy treatment. We postulate that such differences are related to variations in chemotherapy schemes between hematological and breast cancers and their differential interaction with the MTHFR route.
The prognosis of chronic lymphocytic leukemia (CLL) patients displaying trisomy 12 (+12) remains unclear. In this study, we analyzed the influence of the proportion of cells with +12, and other clinical and biologic factors, in time to first therapy (TTFT) and overall survival (OS), in 289 patients diagnosed with CLL carrying +12. Median OS was 129 months. One hundred seventy-four patients (60.2%) presented +12 in <60% of cells. TTFT and OS for this subgroup were longer than for the subgroup with +12 in ≥60% of cells, with a median TTFT of 49 months (CI95%, 39-58) vs 30 months (CI95%, 22-38) (P = 0.001); and a median OS of 159 months (CI95%, 119-182), vs 96 months (CI95%, 58-134) (P = 0.015). Other factors associated with a shorter TTFT were: Binet stage, B symptoms, lymphadenopathy, splenomegaly, high lymphocyte count, 11q-, high β2 microglobulin, and high LDH. In the multivariate analysis, clinical stage, +12 in ≥60% of cells, high lymphocyte count, B symptoms, and 11q- in addition, resulted of significance in predicting shorter TTFT. Significant variables for OS were: Binet stage, lymphadenopathy, splenomegaly, high LDH, high β2 microglobulin, 11q-, and CD38. In the multivariate analysis, only Binet stage, 11q-, and high β2microglobulin significantly predicted shorter OS. CLL with +12 entails a heterogeneous group with intermediate prognosis. However, a high proportion of cells carrying +12 separates a subgroup of patients with poor outcome. Copyright © 2015 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.